- 博客(8)
- 收藏
- 关注
原创 多目标优化中的帕累托(Pareto)相关概念
本文整理自:多目标优化之帕累托最优 - 知乎、多目标优化---帕累托(Pareto)_纯粹的博客-CSDN博客、百度百科1、多目标优化在现实生活中有很多的问题都是由互相冲突和影响的多个目标组成,这些目标不可能同时达到最优的状态,我们通常会尽量让这些目标在一定的区域内达到最佳的状态,这就是多目标优化。2、帕累托占优决策向量a在任何目标函数上的表现都不比决策向量b差,且a在某个目标函数的表现上比b要好,则称a帕累托占优b,或称a优于b,a强帕累托支配b。如下图:横纵坐标表示两个目标函
2021-11-28 11:21:02
36936
9
原创 迁移学习(Transfer learning)相关名词解释
摘录总结自:请问具体什么是迁移学习? - 知乎迁移学习概念:从广义上讲,利用已有的知识、模型、结构来帮助我们达成在目标数据上的学习目标。因此,迁移学习可以细分为很多不同的研究子领域。文献:Sinno Pan and Qiang Yang, A survey on transfer learning. IEEE TNN 2010迁移学习的第一大范式:Pre-train and fine-tune(预训练-微调)是迁移学习最重要的表现形式,指的是在源领域训练好一个网络,直接将其用于目标域的数
2021-11-11 12:39:38
3105
原创 Value-based learning(价值学习)入门(使用DQN)
以下内容总结自B站:深度强化学习(Deep Reinforcement Learning)_哔哩哔哩_bilibili一、概述:Value-based learning(价值学习):使用神经网络Deep Q network(DQN)来近似学习;使用时间差分(TD:temporal different)算法来训练DQN,即学习神经网络的参数。二、概念回顾:1、基于策略的动作价值函数(Action-value function):,表示时刻状态下做动作之后能获得的回报的期望。是回报.
2021-10-20 16:58:05
978
原创 强化学习入门概览
把机器学习按照学习方式分类:监督式学习、无监督式学习、半监督式学习、强化学习。以下内容总结自B站:深度强化学习(Deep Reinforcement Learning)_哔哩哔哩_bilibili以超级玛丽游戏为例,介绍强化学习基本概念(有些不太严谨,但是能快速入门):Agent(智能体):马里奥Environment()State(状态):超级玛丽游戏的一帧画面Action(动作):马里奥做的动作,比如:向上跳,前进,后退。RewardPolicy(策略),根据状态,做
2021-10-12 22:15:00
1331
原创 吴恩达神经网络和深度学习第二课笔记-week1-超参数调试、正则化以及优化
一、数据集(P1)数据集分类:训练数据集(training set):在训练集上之下训练算法,进行模型拟合 交叉验证集(corss validation set / development set / dev set):通过交叉验证集来选择最好的模型(评估不同算法、调整模型超参数等),经过验证后,选定最终模型 测试集(test set):对最终所选定的神经网络系统做出无偏评估,用于评估模型的泛化能力各数据集的占比:传统的划分比例(1万条数据及以下):训练集、交叉验证集、测试集各占60%、2
2021-08-21 12:23:37
265
原创 吴恩达神经网络和深度学习-week4-编程作业1-逐步搭建神经网络(Building your Deep Neural Network: Step by Step)要点整理
作业目的:实现分类预测的L层深度神经网络的所有函数。搭建步骤:一、初始化神经网络的所有参数,包括从1到L-1层的W和b(第0层为输入特征)(一)要点:初始化权重矩阵W[l],使用np.random.randn(shape) * 0.01,其中,shape为(第l层的神经元个数,第l-1层的神经元个数),np.random.randn()生成一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1。乘以0.01是为了确保W的值很小,从而使Z[l]=W[l]X+b[l]
2021-07-20 23:08:30
822
1
原创 吴恩达神经网络和深度学习-week3-浅层神经网络的要点记录
本文所有截图来自于吴恩达深度学习课视频课程。1、神经网络的表示上图是一个双层神经网络的例子,包括一层隐藏层和一层输出层,输入层不算做标准层,有时也将输入层成为第0层。下图详细描述了神经网络的主要构成:最左边是输入层,输入层的x1, x2, x3是样本x的三个特征值(上图只是一个样本的例子),例如:一张图片中,使用R、G、B三个通道的值来表示一个像素点,那么x1, x2, x3就对应这三个通道的值。输入层的激活值写为a^[0],即x=a^[0].中间四个神经元是隐藏层,上图只...
2021-07-03 19:25:12
355
原创 吴恩达神经网络和深度学习-week2-编程作业-具有神经网络思维模式的Logistic回归(Logistic Regression with a Neural Network mindset)要点整理
作业目的:用神经网络构建一个Logistic回归分类器来识别猫。问题集概述:训练集为209张64✖64的图像和它们的分类值(1表示是猫,0表示不是猫);测试集为50张64✖64的图像。学习算法的通用架构:初始化参数; 计算成本函数(cost function)及其梯度(gradient); 使用优化算法(梯度下降:gradient descent),使成本(cost)最小化。将以上三个函数集成在一个主模型函数中即可。步骤概述:一、数据集预处理(一)熟悉你的数据集,.
2021-06-30 22:30:15
483
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人