摘录总结自:请问具体什么是迁移学习? - 知乎
迁移学习
概念:从广义上讲,利用已有的知识、模型、结构来帮助我们达成在目标数据上的学习目标。因此,迁移学习可以细分为很多不同的研究子领域。
文献:Sinno Pan and Qiang Yang, A survey on transfer learning. IEEE TNN 2010
迁移学习的第一大范式:Pre-train and fine-tune(预训练-微调)
是迁移学习最重要的表现形式,指的是在源领域训练好一个网络,直接将其用于目标域的数据,并在目标域数据上进行微调。如:基于Bert的微调。利用pre-trained model,可以省去大量的训练时间。
文献:Yosinsk et al., How transerable are features in neural networks. NIPS 2014.
迁移学习的第二大范式:Domain adaptation(领域自适应、域自适应、域适应、域适配)
简称DA,是迁移学习最热门的研究方向,产出论文最多、积累最丰富。在DA问题中,我们可以访问源域和目标域,目标域通常没有标签(无监督DA)或很少的标签(半监督DA)。核心是减小两个域的分布差异,从而给目标域的数据全部打上标签。例如:如下四个域&