迁移学习(Transfer learning)相关名词解释

摘录总结自:请问具体什么是迁移学习? - 知乎

迁移学习

概念:从广义上讲,利用已有的知识、模型、结构来帮助我们达成在目标数据上的学习目标。因此,迁移学习可以细分为很多不同的研究子领域。

文献:Sinno Pan and Qiang Yang, A survey on transfer learning. IEEE TNN 2010

迁移学习的第一大范式:Pre-train and fine-tune(预训练-微调)

是迁移学习最重要的表现形式,指的是在源领域训练好一个网络,直接将其用于目标域的数据,并在目标域数据上进行微调。如:基于Bert的微调。利用pre-trained model,可以省去大量的训练时间。

文献:Yosinsk et al., How transerable are features in neural networks. NIPS 2014.

迁移学习的第二大范式:Domain adaptation(领域自适应、域自适应、域适应、域适配)

简称DA,是迁移学习最热门的研究方向,产出论文最多、积累最丰富。在DA问题中,我们可以访问源域和目标域,目标域通常没有标签(无监督DA)或很少的标签(半监督DA)。核心是减小两个域的分布差异,从而给目标域的数据全部打上标签。例如:如下四个域&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值