选择排序:
选择排序的时间复杂度为O(n2)
n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果
它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
代码部分:
冒泡排序:
冒泡排序的时间复杂度为O(n2)
-
比较相邻的元素。如果第一个比第二个大,就交换它们两个;
-
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
代码部分:
插入排序:
插入排序的时间复杂度为O(n2)
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
代码部分:
-
1:从第一个元素开始,该元素可以认为已经被排序;
-
2:取出下一个元素,在已经排序的元素序列中从后向前扫描;
-
3:如果该元素(已排序)大于新元素,将该元素移到下一位置;
-
4:重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
-
5:将新元素插入到该位置后;
-
重复步骤2~5。
-
代码部分:
-
希尔排序:
-
基本上和插入排序一样的道理
-
不一样的地方在于,每次循环的步长,通过减半的方式来实现
-
说明:基本原理和插入排序类似,不一样的地方在于。通过间隔多个数据来进行插入排序。