回溯(● 39. 组合总和● 40.组合总和II● 131.分割回文串)

39. 组合总和

题目链接/文章讲解:代码随想录

分析:因为元素可以重复出现,故回溯过程中可以从当前元素开始

class Solution:
    def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
        res = []
        tmp = []
        def backtracing(candidates,index):
            if sum(tmp) == target:
                res.append(tmp[:])
                return 
            if sum(tmp) > target:
                return
            
            for i in range(index,len(candidates)):
                tmp.append(candidates[i])
                backtracing(candidates,i)
                tmp.pop()
        backtracing(candidates,0)
        return res

40.组合总和II

题目链接/文章讲解:代码随想录

分析:因为candidate中每个数字在每个组合中只能出现一次,即每个数字只能使用一次,不能重复使用

class Solution:


    def backtracking(self, candidates, target, total, startIndex, used, path, result):
        if total == target:
            result.append(path[:])
            return

        for i in range(startIndex, len(candidates)):
            # 对于相同的数字,只选择第一个未被使用的数字,跳过其他相同数字
            if i > startIndex and candidates[i] == candidates[i - 1] and not used[i - 1]:
                continue

            if total + candidates[i] > target:
                break

            total += candidates[i]
            path.append(candidates[i])
            used[i] = True
            self.backtracking(candidates, target, total, i + 1, used, path, result)
            used[i] = False
            total -= candidates[i]
            path.pop()

    def combinationSum2(self, candidates, target):
        used = [False] * len(candidates)
        result = []
        candidates.sort()
        self.backtracking(candidates, target, 0, 0, used, [], result)
        return result

131.分割回文串

代码随想录

class Solution:

    def partition(self, s: str) -> List[List[str]]:
        result = []
        self.backtracking(s, 0, [], result)
        return result

    def backtracking(self, s, start_index, path, result ):
        # Base Case
        if start_index == len(s):
            result.append(path[:])
            return
        
        # 单层递归逻辑
        for i in range(start_index, len(s)):
            # 若反序和正序相同,意味着这是回文串
            if s[start_index: i + 1] == s[start_index: i + 1][::-1]:
                path.append(s[start_index:i+1])
                self.backtracking(s, i+1, path, result)   # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
                path.pop()             # 回溯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值