《MMClassification 介绍》课堂心得

文章介绍了如何使用MMClassification工具包进行图像分类。通过PythonAPI,可以下载配置文件和训练权重,然后在CUDA设备上进行推理。示例中,模型成功识别出banana.png图片为香蕉,预测得分接近100%。
摘要由CSDN通过智能技术生成

图像分类工具包 MMClassification 

代码仓库:https://github.com/open-mmlab/mmclassification

文档教程:https://mmclassification.readthedocs.io/en/latest

Python 推理 API

# 下载配置文件和与训练权重
$ mim download mmcls - -config mobilenet - v2_8xb32_in1k - -dest .
# 使用Python API 推理
model = init_model('mobilenet-v2_8xb32_in1k.py',
                   'mobilenet_v2_batch256_imagenet_20200708-3b2dc3af.pth',
                   device='cuda:0')
result = inference_model(model, 'banana.png')
show_result_pyplot(model, 'banana.png', result)


# 推理结果result
{'pred_class': 'banana’,
 'pred_label': 954,
 'pred_score': 0.9999284744262695}

环境搭建

        可以使用 MIM 配置 MMCV 和 MMClassification

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值