使用飞桨重写波士顿房价预测人物

本文介绍如何使用飞桨(PaddlePaddle)进行波士顿房价预测。内容涵盖数据处理、模型设计、训练配置、训练过程以及模型的保存与测试。通过动态图模式,定义网络结构,进行前向计算、反向传播和参数更新。最终,模型的参数被保存以便后续的预测和验证。
摘要由CSDN通过智能技术生成

首先加载飞桨,NumPy和相关类库

import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np
import os
import random
  • 动态图模式(命令式编程范式,类比Python):解析式的执行方式。用户无需预先定义完整的网络结构,每写一行网络代码,即可同时获得计算结果;

1.数据处理

2.模型设计

飞桨建议通过创建Python类的方式完成模型网络的定义,该类需要继承paddle.nn.Layer父类,并且在类中定义init函数和forward函数。

定义init函数:在类的初始化函数中声明每一层网络的实现函数。

定义forward函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果

3.训练配置

 模型实例有两种状态:训练状态.trai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值