首先加载飞桨,NumPy和相关类库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np
import os
import random
- 动态图模式(命令式编程范式,类比Python):解析式的执行方式。用户无需预先定义完整的网络结构,每写一行网络代码,即可同时获得计算结果;
1.数据处理
2.模型设计
飞桨建议通过创建Python类的方式完成模型网络的定义,该类需要继承paddle.nn.Layer父类,并且在类中定义init
函数和forward
函数。
定义init
函数:在类的初始化函数中声明每一层网络的实现函数。
定义forward
函数:构建神经网络结构,实现前向计算过程,并返回预测结果,在本任务中返回的是房价预测结果
3.训练配置
模型实例有两种状态:训练状态.trai