PyTorch深度学习实践(b站刘二大人)P6讲 逻辑斯蒂回归 Logistic Regression



1.分类任务的数据集

① The MNIST Dataset:handwritten digits

  • Training set: 60,000 examples,
  • Test set: 10,000 examples.
  • Classes: 10
  • import torchvision
    train_set = torchvision.datasets.MNIST(root='../dataset/mnist', train=True, download=True)
    test_set = torchvision.datasets.MNIST(root='../dataset/mnist', train=False, download=True)
    # root:数据集存在哪个位置(如果已经下载下来,指定下载下来的文件夹) train:要训练集还是测试集
    #download:是否要从网上下载

    ② The CIFAR-10 dataset:32×32的彩色小图片

  • Training set: 50,000 examples,
  • Test set: 10,000 examples.
  • Classes: 10(飞机、车、鸟、猫、鹿、狗、青蛙、马、船、卡车)
    import torchvision
    train_set = torchvision.datasets.CIFAR10(root='../dataset/mnist', train=True, download=True)
    test_set = torchvision.datasets.CIFAR10(root='../dataset/mnist', train=False, download=True)
    

    2.分类问题

  • 分类问题,与之前学习的线性回归问题不同,输出的是分类的概率值,在训练过程中,计算它属于每一个分类的所有概率,其中概率最大的那一种分类,就是我们要的输出结果。

  • 现在我们将之前的学习问题,修改成分类问题,x表示学习时间,y表示通过率,0表示不通过,1表示通过,这也叫做”二分类问题“

 3.逻辑斯蒂回归

 在之前我们的学习中,\widehat{y}=wx+b 最终预测的是一个实数,而针对分类问题,我们要把\widehat{y} 输出的实数映射成一个0到1的概率( \widehat{y} \epsilon[0,1] ),这个映射的过程就是本节课所学的逻辑斯蒂回归,逻辑斯蒂回归利用公式\delta (x)=\frac{1}{1+e^{-x}},将实数域的数值映射到 [0,1]范围内的概率。逻辑斯蒂函数的图像如下所示: 

计算概率的方式:将原本计算的实数\widehat{y}作为变量输入到逻辑斯蒂函数中,输出的就是映射之后的概率值。 

4.Sigmid Founction(逻辑斯蒂回归函数)

  Sigmid Founction需要满一下三个条件:

  1. 函数值有极限
  2. 是单调增函数
  3. 是饱和函数

     Sigmid Founction中最具有典型性的函数就是逻辑斯蒂函数。其他的一些Sigmid Founction如下图所示:

4.1 模型的改变

      之前学习的函数与逻辑斯蒂回归函数的计算图的区别:可以看出逻辑斯蒂回归函数在计算出\widehat{y}之后,还多了一步——通过使用逻辑斯蒂回归函数,把实数值映射到[0,1]的区间中,再输出\widehat{y}

注:( \sigma一般就代表逻辑斯蒂回归) 

4.2 损失函数的改变(BCE Loss)


之前学习的函数的损失:计算的是两个实数值的差值,是数轴上的距离。

逻辑斯蒂回归函数的损失:输出的是一个分布,需要计算的是两类分布之间的差异,在统计学中的计算方法有——KL散度,cross-entropy(交叉熵)等,这里我们使用的是cross-entropy(交叉熵)方法。

 交叉熵:

                                                       

      这个公式的值表示两个分布之间的差异的大小,值越大,差异越小。在本例中,在公式前加了负号,目的是为了符合我们的平时思维,使Loss越小,差异越小。

      在本例中,是二分类问题, y 的取值只能是0或1,\widehat{y}的取值只能  \epsilon [0,1],Loss函数如下:

 

对于BCE Loss:

  1. 当 y=1 时,(1-y)log(1-\widehat{y})=0,此时Loss=-(ylog\widehat{y}),因为y=1log 函数是单调递增函数,此时 \widehat{y}越大,也就是越接近1,Loss 的值越小,差异越小;
  2. 当 y=0 时,ylog\widehat{y}=0,此时Loss=-(log(1-\widehat{y})),因为y=0log 函数是单调递增函数,此时 \widehat{y}越小,也就是越接近0,Loss 的值越小,差异越小;
  3.   \widehat{y} = P(calss = 1)        1-  \widehat{y} = P(calss = 0) 

如果 y = 0,则表示 y = P(calss = 1) =0,1 - y = P(calss = 0) = 1 

最终我们计算的Loss总和公式如下:

4.3 代码的改变

  • def  __init__没有改变:原因是,\delta (x)(逻辑斯蒂回归函数)是一个没有参数的函数,不需要在构造函数中进行初始化,直接调用就可以;

  • 数据集的改变:因为是二分类问题,y 的取值只能是0或1;
  • 模型的改变:由于PyTorch版本更新,不用再导入torch.nn.functional包,可以直接使用包中的Sigmoid函数进行训练,如下图;

 

  • 损失函数的改变:不再使用MSE损失函数,改为使用BCE损失函数,由于PyTorch版本更新,将  size_average=False 更改为  reduction='sum'

 

代码如下: 

import torch
import matplotlib.pyplot as plt
import numpy as np

#准备数据集
x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[0],[0],[1]])

#设计模型
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel,self).__init__()
        self.liner = torch.nn.Linear(1,1)

    def forward(self,x):
        y_pred = torch.sigmoid(self.liner(x))
        return y_pred

model = LogisticRegressionModel()

#构造损失函数和优化器
criterion = torch.nn.BCELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)

#训练周期(前馈,反馈,更新)
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

# 对model进行测试
x = np.linspace(0,10,200)  #0-10之间取200个点
x_t = torch.Tensor(x).view(200,1) #x变成200行 * 1列 的矩阵
y_t = model(x_t)    #张量x_t送到模型里,得到y_t
y = y_t.data.numpy()  #调用.numpy()取出数据y


plt.plot(x, y)
plt.plot([0, 10], [0.5, 0.5], c='r')
plt.xlabel('Hours')
plt.ylabel('Probability of Pass')
plt.grid()
plt.show()


参考PyTorch深度学习——逻辑斯蒂回归(分类问题)(B站刘二大人P6学习笔记)_Learning_AI的博客-CSDN博客

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值