A-1:树状数组

本文介绍了树状数组的概念,包括其解决的问题(单点修改和区间查询)、使用方法(如前置知识lowbit、单点修改和区间查询操作)、与前缀和的对比,以及在实际问题中的应用。通过实例和习题练习帮助读者掌握这一高级数据结构。
摘要由CSDN通过智能技术生成

1.介绍

树状数组是一个比较难以理解的高级数据结构(至少我觉得很难😢)

由于难以理解,所以只好从以下几个方面去理解:

  1. 树状数组用于解决什么问题
  2. 如何去使用树状数组
  3. 树状数组是否优化了算法
  4. 用例子说明

新手不要去死钻“树状数组怎么被总结出来的?树状数组的发明过程”,如果有完美的回答感谢给个链接我去圆梦一下😢

!!对于这个学习,我的看法是先知道什么是树状数组,怎么写,然后根据数据和画图走几遍过程,然后做题。最后再去看数学推导(如果时间充裕的话)。

Q1:树状数组解决什么问题?

预告:数状数组解决”单点修改,区间查询(当然区间也可以是一个点)“问题

首先前缀和是大家都知道的基础算法。假设前缀和数组是 p r e [ n ] pre[n] pre[n],原数组是 a [ n ] a[n] a[n]
p r e [ i ] 表示数组区间 [ 0 , i ] 之和 = a [ 0 ] + a [ 1 ] + a [ 2 ] + . . . + a [ i ] pre[i]表示数组区间[0,i]之和=a[0]+a[1]+a[2]+...+a[i] pre[i]表示数组区间[0,i]之和=a[0]+a[1]+a[2]+...+a[i]
查询区间的时间复杂度是 O ( 1 ) O(1) O(1),比如: 查询 [ i , j ] [i,j] [i,j]之和= p r e [ j ] − p r e [ i − 1 ] = a [ i ] + a [ i + 1 ] + . . . + a [ j ] pre[j]-pre[i-1]=a[i]+a[i+1]+...+a[j] pre[j]pre[i1]=a[i]+a[i+1]+...+a[j],很显然只需要一次操作即可。
重点来了!! 如果修改原数组的一个元素,假设 a [ 0 ] = a [ 0 ] + 1 a[0]=a[0]+1 a[0]=a[0]+1,那么需要 p r e [ 0 ] + 1 pre[0]+1 pre[0]+1 p r e [ 1 ] + 1 pre[1]+1 pre[1]+1 p r e [ n ] + 1 pre[n]+1 pre[n]+1
总结发现,每次修改一个原数组元素,当前元素到数组末尾的所有元素的前缀和都需要改变,那么维护前缀和的时间复杂度是 O ( n ) O(n) O(n),树状数组就是优化掉这个O(n)的大杀器!

总结一下:数状数组解决”单点修改,区间查询(当然区间也可以是一个点)“问题

Q2:树状数组的使用

😱😱😱😱😱

1.前置知识:lowbit(x)

l o w b i t ( x ) lowbit(x) lowbit(x),找x最低位的1及1右边(比1更低位)的所有数的总和,当然最低位1右边全是0

x的十进制数x的二进制数lowbit(x)(换成十进制)
1010102
1110111
1211004
1311011
1411102
1511111
160001 000016

现在应该是了解lowbit做一个什么事情,那么如何实现呢?

int lowbit(x)
{
	return x&(-x);
}

对的,就是这么简单
对数取负表现为 ”除最高位,其余位取反,最低位加1”
来翻译一下: 令x=10
x=1010
-x=1110
x&(-x)=0010

Perfect😋。

2.单点修改

不同于前缀和数组,修改一个点,需要修改O(n)次前缀和区间,而树状数组只需要修改O( log ⁡ 2 n \log_2 n log2n)次
操作为

void add(int i, int y)  //单点修改(同时可以初始化C数组)
{
	for(;i<=n;i+=lowbit(i))
	{
	    C[i]+=y;
	}
}

3.求[1,n]的和

不同于前缀和O(1)次,查询前n个数的和需要O( log ⁡ 2 n \log_2 n log2n)次
操作为

int sum(int i)  //前缀和,求[1,i]的和
{
    int res=0;
	for(;i>0;i-=lowbit(i))
	    res+=C[i];
	return res;
}

4.区间查询

操作为

int Query(int i,int j)  //查询[i,j]区间和
{
	return sum(i)-sum(j-1);
}

5.hh

很显然,已经给出了单点修改,区间查询的操作,且时间复杂度实实在在更低更有效,比单纯使用前缀和好很多。那么有这些知识就可以去写题了。

Q3:树状数组是否优化了

和前缀和相比:

前缀和树状数组
区间查询O(1)O( log ⁡ 2 n \log_2 n log2n)
单点修改O(n)O( log ⁡ 2 n \log_2 n log2n)

当n非常大的时候
1 + n > 2 ∗ ( log ⁡ 2 n ) 1+n>2 *(\log_2 n) 1+n>2(log2n)

Q4:上图上例子解释上面说的东西(Important)

在这里插入图片描述
这个图是 借的,嗯,肯定是借的。
别被误导了!!,C数组不是前缀和,C[4]不是前4个数之和,这个数组单独看没有意义,只有和函数配合使用才有意义!!

现在先抛出问题:需要对数组进行单点修改,区间查询。

现在有数组 A [ 1 ] . . . A [ 8 ] = 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 A[1]... A[8]={1,2,3,4,5,6,7,8} A[1]...A[8]=1,2,3,4,5,6,7,8
先初始化树状数组C,这个数组单独不代表什么,要和其它操作一起才有意义

void add(int i, int y)  //单点修改(同时可以初始化C数组)
{
	for(;i<=n;i+=lowbit(i))
	{
	    C[i]+=y;
	}
}
C[i]+=yi+=lowbit(i),C[i]+=yi+=lowbit(i) ,C[i]+=yi+=lowbit(i),C[i]+=y
C[1]+=1C[2]+=1C[4]+=1C[8]+=1
C[2]+=2C[4]+=2C[8]+=2
C[3]+=3C[4]+=3C[8]+=3
C[4]+=4C[8]+=4
C[5]+=5C[6]+=5C[8]+=5
C[6]+=6C[8]+=6
C[7]+=7C[8]+=7
C[8]+=8
iC[i]
11
23
33
410
55
611
77
836

这就是初始化树状数组,那么先来看查询。
查询 (对照上面的表看,自己琢磨一下)

int sum(int i)  //前缀和,求[1,i]的和
{
    int res=0;
	for(;i>0;i-=lowbit(i))
	    res+=C[i];
	return res;
}
isum(i)
1res=C[1]=1
2res=C[2]=3
3res=C[3]+C[2]=6
7res=C[7]+C[6]+C[4]=28
8res=C[8]=36

2.习题练习

给个链接,兄弟们去刷吧😋
洛谷树状数组题集
Leetcode树状数组题集

洛谷的先做题集里面的模板题

稍后把我的题解搬几个过来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值