【免费分享】高斯过程回归(Gaussian process regression)原理详解及MATLAB代码实战

MATLAB实战

net = fitrgp(p_train, t_train, 'KernelFunction', 'ardsquaredexponential', ...
    'Optimizer', 'lbfgs', 'KernelParameters', [sigmaL0; sigmaF0], 'Sigma', sigmaN0);

fitrgp 函数来训练一个 高斯过程回归模型 (Gaussian Process Regression, GPR)。具体来说,它在训练数据 p_train 和目标值 t_train 上拟合模型,并设置了若干超参数。以下是每个部分的解释:

1. fitrgp(p_train, t_train, ...)

  • fitrgp 是 MATLAB 用于训练高斯过程回归模型的函数。它接受输入数据和目标数据,并返回一个训练好的模型 net
  • p_train:这是输入数据(特征矩阵),大小为 n×dn \times dn×d,其中 nnn 是样本数量,ddd 是特征维度。
  • t_train:这是对应的输出数据(目标值),通常是一个 n×1n \times 1n×1 的向量,表示每个样本的目标值。

2. 'KernelFunction', 'ardsquaredexponential'

  • KernelFunction 是用于指定核函数的参数。这里设置为 'ardsquaredexponential',即自动相关长度平方指数核(ARD Squared Exponential Kernel)
    • ARD(Automatic Relevance Determination,自动相关确定)允许每个输入维度有不同的长度尺度参数 lll,从而对每个特征自动进行相关性评估。
    • Squared Exponential Kernel 是高斯过程常用的核函数,它是一个平滑的核函数,具有良好的拟合能力,通常用于连续数据的回归问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值