PyTorch 深度学习实战(25):逆向强化学习(Inverse RL)

一、逆向强化学习原理

1. 逆向强化学习核心思想

逆向强化学习(Inverse Reinforcement Learning, IRL)旨在从专家示范中推断奖励函数,而非直接学习策略。与强化学习的区别在于:

对比维度强化学习 (RL)逆向强化学习 (IRL)
输入已知奖励函数已知专家轨迹(状态-动作序列)
输出最优策略推测的奖励函数 + 模仿策略
目标最大化累计奖励使专家轨迹在推测的奖励函数下最优
应用场景游戏、机器人控制模仿学习、自动驾驶策略推断
2. 最大熵逆向强化学习框架

最大熵 IRL 通过最大化专家轨迹的似然推断奖励函数,核心公式:


二、生成对抗模仿学习(GAIL)算法

生成对抗模仿学习(Generative Adversarial Imitation Learning, GAIL)结合了 IRL 和 GAN 的思想:

  1. 生成器(策略网络):生成模仿专家行为的轨迹

  2. 判别器(奖励网络):区分专家轨迹和生成轨迹

  3. 对抗训练:策略网络欺骗判别器,使其无法分辨轨迹来源

数学表达:


三、GAIL 实现步骤(基于 Gymnasium)

我们将以 MuJoCo HalfCheetah 环境 为例,实现 GAIL 算法:

  1. 采集专家数据:使用预训练策略生成专家轨迹

  2. 构建策略网络:基于 PPO 的生成器

  3. 构建判别器网络:二分类网络区分专家/生成数据

  4. 对抗训练:交替优化生成器和判别器


四、代码实现

1.生成专家数据:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import gymnasium as gym
from collections import deque
import time

# ================== 配置参数优化 ==================
class SACConfig:
    env_name = "HalfCheetah-v5"     # 使用与 GAIL 相同的环境
    hidden_dim = 256                # 网络隐藏层维度
    actor_lr = 3e-4                 # 策略网络学习率
    critic_lr = 3e-4                # 价值网络学习率
    alpha_lr = 3e-4                 # 温度系数学习率
    gamma = 0.99                    # 折扣因子
    tau = 0.005                     # 软更新系数
    buffer_size = 100000            # 经验回放缓冲区大小
    batch_size = 256                # 批量大小
    max_episodes = 1000             # 最大训练回合数(可根据需要调整)
    target_entropy = -torch.prod(torch.Tensor([1])).item()  # 熵目标
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# ================== 策略网络(Actor) ==================
class Actor(nn.Module):
    def __init__(self, state_dim, action_dim):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(state_dim, SACConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(SACConfig.hidden_dim, SACConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(SACConfig.hidden_dim, action_dim),
            nn.Tanh()  # 假设动作空间在 [-1, 1]
        )
        self.log_std = nn.Parameter(torch.zeros(action_dim))
    
    def forward(self, state):
        mean = self.net(state)
        std = self.log_std.exp()
        return mean, std

# ================== 价值网络(Critic) ==================
class Critic(nn.Module):
    def __init__(self, state_dim, action_dim):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(state_dim + action_dim, SACConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(SACConfig.hidden_dim, SACConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(SACConfig.hidden_dim, 1)
        )
    
    def forward(self, state, action):
        x = torch.cat([state, action], dim=-1)
        return self.net(x)

# ================== SAC 训练系统 ==================
class SACTrainer:
    def __init__(self):
        self.env = gym.make(SACConfig.env_name)
        self.state_dim = self.env.observation_space.shape[0]
        self.action_dim = self.env.action_space.shape[0]
        
        # 初始化网络
        self.actor = Actor(self.state_dim, self.action_dim).to(SACConfig.device)
        self.critic1 = Critic(self.state_dim, self.action_dim).to(SACConfig.device)
        self.critic2 = Critic(self.state_dim, self.action_dim).to(SACConfig.device)
        self.target_critic1 = Critic(self.state_dim, self.action_dim).to(SACConfig.device)
        self.target_critic2 = Critic(self.state_dim, self.action_dim).to(SACConfig.device)
        self.target_critic1.load_state_dict(self.critic1.state_dict())
        self.target_critic2.load_state_dict(self.critic2.state_dict())
        
        # 优化器
        self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=SACConfig.actor_lr)
        self.critic1_optimizer = optim.Adam(self.critic1.parameters(), lr=SACConfig.critic_lr)
        self.critic2_optimizer = optim.Adam(self.critic2.parameters(), lr=SACConfig.critic_lr)
        
        # 自动调节温度系数 alpha
        self.log_alpha = torch.zeros(1, requires_grad=True, device=SACConfig.device)
        self.alpha_optimizer = optim.Adam([self.log_alpha], lr=SACConfig.alpha_lr)
        
        # 经验回放缓冲区
        self.buffer = deque(maxlen=SACConfig.buffer_size)
    
    def select_action(self, state):
        state = torch.FloatTensor(state).to(SACConfig.device)
        mean, std = self.actor(state)
        dist = Normal(mean, std)
        action = dist.sample()
        return action.detach().cpu().numpy()
    
    def update(self):
        if len(self.buffer) < SACConfig.batch_size:
            return
        
        # 从缓冲区采样
        samples = random.sample(self.buffer, SACConfig.batch_size)
        states, actions, rewards, next_states, dones = zip(*samples)
        states = torch.FloatTensor(np.array(states)).to(SACConfig.device)
        actions = torch.FloatTensor(np.array(actions)).to(SACConfig.device)
        rewards = torch.FloatTensor(np.array(rewards)).unsqueeze(-1).to(SACConfig.device)
        next_states = torch.FloatTensor(np.array(next_states)).to(SACConfig.device)
        dones = torch.FloatTensor(np.array(dones)).unsqueeze(-1).to(SACConfig.device)
        
        # 更新 Critic
        with torch.no_grad():
            next_actions, next_log_probs = self.actor(next_states)
            target_q1 = self.target_critic1(next_states, next_actions)
            target_q2 = self.target_critic2(next_states, next_actions)
            target_q = torch.min(target_q1, target_q2) - self.log_alpha.exp() * next_log_probs
            target_q = rewards + SACConfig.gamma * (1 - dones) * target_q
        
        current_q1 = self.critic1(states, actions)
        current_q2 = self.critic2(states, actions)
        critic1_loss = nn.MSELoss()(current_q1, target_q)
        critic2_loss = nn.MSELoss()(current_q2, target_q)
        
        self.critic1_optimizer.zero_grad()
        critic1_loss.backward()
        self.critic1_optimizer.step()
        
        self.critic2_optimizer.zero_grad()
        critic2_loss.backward()
        self.critic2_optimizer.step()
        
        # 更新 Actor
        new_actions, log_probs = self.actor(states)
        q1 = self.critic1(states, new_actions)
        q2 = self.critic2(states, new_actions)
        actor_loss = (self.log_alpha.exp() * log_probs - torch.min(q1, q2)).mean()
        
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()
        
        # 更新 alpha
        alpha_loss = -(self.log_alpha * (log_probs + SACConfig.target_entropy).detach()).mean()
        self.alpha_optimizer.zero_grad()
        alpha_loss.backward()
        self.alpha_optimizer.step()
        
        # 软更新目标网络
        for param, target_param in zip(self.critic1.parameters(), self.target_critic1.parameters()):
            target_param.data.copy_(SACConfig.tau * param.data + (1 - SACConfig.tau) * target_param.data)
        for param, target_param in zip(self.critic2.parameters(), self.target_critic2.parameters()):
            target_param.data.copy_(SACConfig.tau * param.data + (1 - SACConfig.tau) * target_param.data)
    
    def train_and_save_expert_data(self, save_path="expert_data.npy"):
        expert_states = []
        expert_actions = []
        
        for episode in range(SACConfig.max_episodes):
            state = self.env.reset()
            episode_reward = 0
            
            while True:
                action = self.select_action(state)
                next_state, reward, done, _ = self.env.step(action)
                self.buffer.append((state, action, reward, next_state, done))
                
                # 收集专家数据(后期训练阶段)
                if episode > SACConfig.max_episodes // 2:  # 后半段训练数据作为专家数据
                    expert_states.append(state)
                    expert_actions.append(action)
                
                state = next_state
                episode_reward += reward
                self.update()
                
                if done:
                    break
            
            if (episode + 1) % 100 == 0:
                print(f"Episode {episode+1} | Reward: {episode_reward:.1f}")
        
        # 保存专家数据
        np.save(save_path, {
            'states': np.array(expert_states),
            'actions': np.array(expert_actions)
        })
        print(f"专家数据已保存至 {save_path}")

if __name__ == "__main__":
    start = time.time()
    start_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(start))
    print(f"开始时间: {start_str}")
    print("训练专家策略...")
    trainer = SACTrainer()
    trainer.train_and_save_expert_data()
    end = time.time()
    end_str = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(end))
    print(f"训练完成时间: {end_str}")
    print(f"总耗时: {end - start:.2f}秒")

2.实现代码:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.distributions import Normal
import gymnasium as gym
from collections import deque
import time
import random

class GAILConfig:
    env_name = "HalfCheetah-v5"
    expert_data_path = "expert_data.npy"
    hidden_dim = 256
    policy_lr = 3e-4
    discriminator_lr = 1e-4
    gamma = 0.99
    lam = 0.95
    clip_epsilon = 0.2
    batch_size = 64
    max_episodes = 100
    max_steps = 1000  # Added max steps per episode
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class Policy(nn.Module):
    def __init__(self, state_dim, action_dim):
        super().__init__()
        self.actor = nn.Sequential(
            nn.Linear(state_dim, GAILConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(GAILConfig.hidden_dim, GAILConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(GAILConfig.hidden_dim, action_dim)
        )
        self.critic = nn.Sequential(
            nn.Linear(state_dim, GAILConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(GAILConfig.hidden_dim, GAILConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(GAILConfig.hidden_dim, 1)
        )
        self.log_std = nn.Parameter(torch.zeros(action_dim))
    
    def forward(self, state):
        action_mean = self.actor(state)
        value = self.critic(state)
        return action_mean, value
    
    def act(self, state):
        with torch.no_grad():
            action_mean, value = self.forward(state)
            dist = Normal(action_mean, self.log_std.exp())
            action = dist.sample()
            log_prob = dist.log_prob(action).sum(-1)
        return action.cpu().numpy(), log_prob.cpu().numpy(), value.cpu().numpy()

class Discriminator(nn.Module):
    def __init__(self, state_dim, action_dim):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(state_dim + action_dim, GAILConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(GAILConfig.hidden_dim, GAILConfig.hidden_dim),
            nn.ReLU(),
            nn.Linear(GAILConfig.hidden_dim, 1),
            nn.Sigmoid()
        )
    
    def forward(self, state, action):
        x = torch.cat([state, action], dim=-1)
        return self.net(x)

class ReplayBuffer:
    def __init__(self):
        self.buffer = deque(maxlen=100000)
    
    def add(self, state, action, reward, next_state, done):
        self.buffer.append((state, action, reward, next_state, done))
    
    def sample(self, batch_size):
        samples = random.sample(self.buffer, batch_size)
        states, actions, rewards, next_states, dones = zip(*samples)
        return (
            torch.FloatTensor(np.array(states)).to(GAILConfig.device),
            torch.FloatTensor(np.array(actions)).to(GAILConfig.device),
            torch.FloatTensor(np.array(rewards)).unsqueeze(-1).to(GAILConfig.device),
            torch.FloatTensor(np.array(next_states)).to(GAILConfig.device),
            torch.FloatTensor(np.array(dones)).unsqueeze(-1).to(GAILConfig.device)
        )
    
    def __len__(self):
        return len(self.buffer)

class GAILTrainer:
    def __init__(self):
        self.env = gym.make(GAILConfig.env_name)
        self.state_dim = self.env.observation_space.shape[0]
        self.action_dim = self.env.action_space.shape[0]
        
        self.policy = Policy(self.state_dim, self.action_dim).to(GAILConfig.device)
        self.discriminator = Discriminator(self.state_dim, self.action_dim).to(GAILConfig.device)
        
        self.optimizer_policy = optim.Adam(self.policy.parameters(), lr=GAILConfig.policy_lr)
        self.optimizer_discriminator = optim.Adam(self.discriminator.parameters(), lr=GAILConfig.discriminator_lr)
        
        # Load expert data
        self.expert_data = np.load(GAILConfig.expert_data_path, allow_pickle=True).item()
        self.expert_states = torch.FloatTensor(self.expert_data['states']).to(GAILConfig.device)
        self.expert_actions = torch.FloatTensor(self.expert_data['actions']).to(GAILConfig.device)
        
        self.buffer = ReplayBuffer()
    
    def compute_reward(self, states, actions):
        with torch.no_grad():
            d = self.discriminator(states, actions)
            return -torch.log(1 - d + 1e-8)
    
    def update_discriminator(self):
        states, actions, _, _, _ = self.buffer.sample(GAILConfig.batch_size)
        
        idx = np.random.randint(0, len(self.expert_states), GAILConfig.batch_size)
        expert_states = self.expert_states[idx]
        expert_actions = self.expert_actions[idx]
        
        real_output = self.discriminator(expert_states, expert_actions)
        fake_output = self.discriminator(states, actions)
        loss_real = -torch.log(real_output + 1e-8).mean()
        loss_fake = -torch.log(1 - fake_output + 1e-8).mean()
        loss = loss_real + loss_fake
        
        self.optimizer_discriminator.zero_grad()
        loss.backward()
        self.optimizer_discriminator.step()
        return loss.item()
    
    def compute_gae(self, rewards, values, dones):
        advantages = torch.zeros_like(rewards)
        last_advantage = 0
        
        for t in reversed(range(len(rewards))):
            if t == len(rewards) - 1:
                next_value = 0
                next_non_terminal = 1.0 - dones[t]
            else:
                next_value = values[t + 1]
                next_non_terminal = 1.0 - dones[t]
            
            delta = rewards[t] + GAILConfig.gamma * next_value * next_non_terminal - values[t]
            advantages[t] = delta + GAILConfig.gamma * GAILConfig.lam * next_non_terminal * last_advantage
            last_advantage = advantages[t]
        
        returns = advantages + values
        return advantages, returns
    
    def update_policy(self, states, actions, log_probs, rewards, dones):
        # Calculate values for all states
        _, values = self.policy(states)
        values = values.squeeze(-1)
        
        # Compute GAE
        advantages, returns = self.compute_gae(rewards.squeeze(-1), values, dones.squeeze(-1))
        
        # Normalize advantages
        advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
        
        # Calculate new log probs and values
        action_means, new_values = self.policy(states)
        dist = Normal(action_means, torch.ones_like(action_means))
        new_log_probs = dist.log_prob(actions).sum(-1, keepdim=True)
        
        # PPO loss
        ratio = (new_log_probs - log_probs).exp()
        surr1 = ratio * advantages.unsqueeze(-1)
        surr2 = torch.clamp(ratio, 1 - GAILConfig.clip_epsilon, 1 + GAILConfig.clip_epsilon) * advantages.unsqueeze(-1)
        policy_loss = -torch.min(surr1, surr2).mean()
        
        # Value loss
        value_loss = 0.5 * (new_values - returns.unsqueeze(-1)).pow(2).mean()
        
        # Total loss
        total_loss = policy_loss + value_loss
        
        self.optimizer_policy.zero_grad()
        total_loss.backward()
        self.optimizer_policy.step()
        return total_loss.item()
    
    def train(self):
        for episode in range(GAILConfig.max_episodes):
            state, _ = self.env.reset()
            episode_reward = 0
            episode_states = []
            episode_actions = []
            episode_rewards = []
            episode_log_probs = []
            episode_dones = []
            
            for _ in range(GAILConfig.max_steps):
                state_tensor = torch.FloatTensor(state).unsqueeze(0).to(GAILConfig.device)
                action, log_prob, _ = self.policy.act(state_tensor)
                action = action[0]
                
                next_state, reward, terminated, truncated, _ = self.env.step(action)
                done = terminated or truncated
                
                episode_states.append(state)
                episode_actions.append(action)
                episode_rewards.append(reward)
                episode_log_probs.append(log_prob)
                episode_dones.append(done)
                episode_reward += reward
                
                self.buffer.add(state, action, reward, next_state, done)
                state = next_state
                
                if done:
                    break
            
            # Convert to tensors
            states_tensor = torch.FloatTensor(np.array(episode_states)).to(GAILConfig.device)
            actions_tensor = torch.FloatTensor(np.array(episode_actions)).to(GAILConfig.device)
            rewards_tensor = torch.FloatTensor(np.array(episode_rewards)).unsqueeze(-1).to(GAILConfig.device)
            log_probs_tensor = torch.FloatTensor(np.array(episode_log_probs)).unsqueeze(-1).to(GAILConfig.device)
            dones_tensor = torch.FloatTensor(np.array(episode_dones)).unsqueeze(-1).to(GAILConfig.device)
            
            # Compute rewards from discriminator
            rewards_tensor = self.compute_reward(states_tensor, actions_tensor)
            
            # Update policy
            p_loss = self.update_policy(
                states_tensor,
                actions_tensor,
                log_probs_tensor,
                rewards_tensor,
                dones_tensor
            )
            
            # Update discriminator
            d_loss = self.update_discriminator()
            
            if (episode + 1) % 10 == 0:
                print(f"Episode {episode+1} | Reward: {episode_reward:.1f} | Policy Loss: {p_loss:.2f} | D Loss: {d_loss:.2f}")

if __name__ == "__main__":
    print("初始化环境...")
    trainer = GAILTrainer()
    trainer.train()

五、关键代码解析

  1. 判别器网络

    • 输入为状态和动作的拼接,输出专家数据的概率(Sigmoid 激活)

    • 损失函数为二元交叉熵,区分专家数据和生成数据

  2. 奖励计算

    • 生成器的奖励来自判别器的输出:$r(s,a) = -\log(1 - D(s,a))$

    • 判别器 $D(s,a)$ 越接近 1(专家数据),奖励越大

  3. 对抗训练流程

    • 步骤 1:生成器采样轨迹并存储到经验回放缓冲区

    • 步骤 2:用生成数据和专家数据更新判别器

    • 步骤 3:用判别器计算的奖励更新生成器(基于 PPO)


六、训练输出示例

初始化环境...
Episode 10 | Reward: -953.6 | Policy Loss: 78.33 | D Loss: 1.23
Episode 20 | Reward: -1001.0 | Policy Loss: 58.94 | D Loss: 1.05
Episode 30 | Reward: -1096.4 | Policy Loss: 50.88 | D Loss: 0.88
Episode 40 | Reward: -1108.3 | Policy Loss: 34.90 | D Loss: 0.78
Episode 50 | Reward: -1144.0 | Policy Loss: 34.77 | D Loss: 0.66
Episode 60 | Reward: -1292.6 | Policy Loss: 33.78 | D Loss: 0.60
Episode 70 | Reward: -1403.1 | Policy Loss: 38.53 | D Loss: 0.59
Episode 80 | Reward: -1741.3 | Policy Loss: 29.86 | D Loss: 0.45
Episode 90 | Reward: -2023.8 | Policy Loss: 45.42 | D Loss: 0.45
Episode 100 | Reward: -2192.2 | Policy Loss: 111.91 | D Loss: 0.36

在下一篇文章中,我们将探索 多目标强化学习(Multi-Objective RL),并实现基于 Pareto 前沿的优化算法!


注意事项

  1. 安装依赖:

    pip install gymnasium torch numpy
  2. 专家数据生成:

    • 使用预训练策略(如 SAC)在目标环境中生成专家轨迹并保存为 expert_data.npy

    • 示例数据格式:

      expert_data = {
          'states': np.array([s0, s1, ..., sn]),  # 状态序列
          'actions': np.array([a0, a1, ..., an])   # 动作序列
      }
  3. 完整训练需要 GPU 加速(推荐显存 ≥ 8GB)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值