1.完全平方数
给你一个整数 n
,返回 和为 n
的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1
、4
、9
和 16
都是完全平方数,而 3
和 11
不是。
class Solution {
public int numSquares(int n) {
//确定dp数组及下标含义 i - 代表整数 dp[i] 返回和为n的完全平分数的最少数量
int[] dp = new int[n + 1];
Arrays.fill(dp, n + 1);
//初始化数组
dp[0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 0; j * j <= i; j++) {
//从前向后遍历
dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
}
}
//举例验证结果
return dp[n];
}
}
2.零钱兑换
给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
class Solution {
public int coinChange(int[] coins, int amount) {
//1.确定dp数组及下标定义
//2.确定递推公式 i-金额 dp[i]-最少得硬币个数
int[] dp = new int[amount + 1];
Arrays.fill(dp, amount + 1);
//3.初始化dp
dp[0] = 0;
for (int i = 1; i <= amount; i++) {
for (int j = 0; j < coins.length; j++) {
if (i - coins[j] >= 0) {
//4.确定遍历顺序 从前向后
dp[i] = Math.min(dp[i],dp[i - coins[j]] + 1);
}
}
}
//5.举例推导
return dp[amount] > amount ? -1 : dp[amount];
}
}