动归||完全平方数和零钱兑换

1.完全平方数

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

class Solution {
    public int numSquares(int n) {
       //确定dp数组及下标含义 i - 代表整数 dp[i] 返回和为n的完全平分数的最少数量
       int[] dp = new int[n + 1];
       Arrays.fill(dp, n + 1);
       //初始化数组
       dp[0] = 0;
       for (int i = 1; i <= n; i++) {
        for (int j = 0; j * j <= i; j++) {
          //从前向后遍历
       dp[i] = Math.min(dp[i], dp[i - j * j] + 1);
        }
       }
       //举例验证结果
       return dp[n];
    }
}

2.零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

class Solution {
    public int coinChange(int[] coins, int amount) {
     //1.确定dp数组及下标定义
     //2.确定递推公式 i-金额 dp[i]-最少得硬币个数
     int[] dp = new int[amount + 1];
     Arrays.fill(dp, amount + 1);
     //3.初始化dp
     dp[0] = 0;
     for (int i = 1; i <= amount; i++) {
        for (int j = 0; j < coins.length; j++) {
            if (i - coins[j] >= 0) {
             //4.确定遍历顺序  从前向后
          dp[i] = Math.min(dp[i],dp[i - coins[j]] + 1);
            }
        }
     }
     //5.举例推导
     return dp[amount] > amount ? -1 : dp[amount];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值