当然,这里是一个包含 `nextsibling` 有 `child` 的树结构示例:
### 树结构示例
```
A
/
B
/ \
C D
/ \
E F
/
G
```
在孩子-兄弟表示法中:
- `A` 是根节点,`firstchild` 是 `B`。
- `B` 的 `firstchild` 是 `C`,`nextsibling` 是 `D`。
- `C` 没有孩子和兄弟。
- `D` 的 `firstchild` 是 `E`,`nextsibling` 是 `F`。
- `E` 没有孩子和兄弟。
- `F` 的 `firstchild` 是 `G`,`nextsibling` 是 `NULL`。
- `G` 没有孩子和兄弟。
### 递归计算过程
我们使用 `TreeDepth(CSTree *CST)` 来计算深度,假设函数名是 `TreeDepth`,`CST` 是当前节点指针。
#### 从根节点 A 开始
1. **`TreeDepth(A)`**:
- `left = TreeDepth(B)`: 递归计算孩子 `B` 的深度。
- `right = TreeDepth(NULL)`: `A` 没有兄弟,返回 `0`。
- 比较 `left + 1` 和 `right`,返回 `max(left + 1, right)`。
#### 进入节点 B
2. **`TreeDepth(B)`**:
- `left = TreeDepth(C)`: 递归计算孩子 `C` 的深度。
- `right = TreeDepth(D)`: 递归计算兄弟 `D` 的深度。
- 比较 `left + 1` 和 `right`,返回 `max(left + 1, right)`。
#### 进入节点 C
3. **`TreeDepth(C)`**:
- `left = TreeDepth(NULL)`: `C` 没有孩子,返回 `0`。
- `right = TreeDepth(NULL)`: `C` 没有兄弟,返回 `0`。
- 返回 `1`。
返回到节点 B:
- `left = 1`(从 `C` 返回的结果)
- `right = TreeDepth(D)`
#### 进入节点 D
4. **`TreeDepth(D)`**:
- `left = TreeDepth(E)`: 递归计算孩子 `E` 的深度。
- `right = TreeDepth(F)`: 递归计算兄弟 `F` 的深度。
- 比较 `left + 1` 和 `right`,返回 `max(left + 1, right)`。
#### 进入节点 E
5. **`TreeDepth(E)`**:
- `left = TreeDepth(NULL)`: `E` 没有孩子,返回 `0`。
- `right = TreeDepth(NULL)`: `E` 没有兄弟,返回 `0`。
- 返回 `1`。
返回到节点 D:
- `left = 1`(从 `E` 返回的结果)
- `right = TreeDepth(F)`
#### 进入节点 F
6. **`TreeDepth(F)`**:
- `left = TreeDepth(G)`: 递归计算孩子 `G` 的深度。
- `right = TreeDepth(NULL)`: `F` 没有兄弟,返回 `0`。
- 返回 `max(left + 1, right)`。
#### 进入节点 G
7. **`TreeDepth(G)`**:
- `left = TreeDepth(NULL)`: `G` 没有孩子,返回 `0`。
- `right = TreeDepth(NULL)`: `G` 没有兄弟,返回 `0`。
- 返回 `1`。
返回到节点 F:
- `left = 1`(从 `G` 返回的结果)
- `right = 0`
- 返回 `max(1 + 1, 0) = 2`
返回到节点 D:
- `left = 1`
- `right = 2`(从 `F` 返回的结果)
- 返回 `max(1 + 1, 2) = 2`
返回到节点 B:
- `left = 1`
- `right = 2`(从 `D` 返回的结果)
- 返回 `max(1 + 1, 2) = 2
返回到根节点 A:
- `left = 2`(从 `B` 返回的结果)
- `right = 0`
- 返回 `max(2 + 1, 0) = 3`
最终结果:树的深度是 3。通过递归调用,逐步比较每个节点的孩子和兄弟方向的深度,找到最长路径,最终计算出整个树的深度。
1645

被折叠的 条评论
为什么被折叠?



