拓扑排序的经典例题
Leeocode 851. 喧闹和富有
有一组 n 个人作为实验对象,从 0 到 n - 1 编号,其中每个人都有不同数目的钱,以及不同程度的安静值(quietness)。为了方便起见,我们将编号为 x 的人简称为 "person x "。
给你一个数组 richer ,其中 richer[i] = [ai, bi] 表示 person ai 比 person bi 更有钱。另给你一个整数数组 quiet ,其中 quiet[i] 是 person i 的安静值。richer 中所给出的数据 逻辑自恰(也就是说,在 person x 比 person y 更有钱的同时,不会出现 person y 比 person x 更有钱的情况 )。
现在,返回一个整数数组 answer 作为答案,其中 answer[x] = y 的前提是,在所有拥有的钱肯定不少于 person x 的人中,person y 是最安静的人(也就是安静值 quiet[y] 最小的人)。
示例 1:
输入:richer = [[1,0],[2,1],[3,1],[3,7],[4,3],[5,3],[6,3]], quiet = [3,2,5,4,6,1,7,0]
输出:[5,5,2,5,4,5,6,7]
解释:
answer[0] = 5,
person 5 比 person 3 有更多的钱,person 3 比 person 1 有更多的钱,person 1 比 person 0 有更多的钱。
唯一较为安静(有较低的安静值 quiet[x])的人是 person 7,
但是目前还不清楚他是否比 person 0 更有钱。
answer[7] = 7,
在所有拥有的钱肯定不少于 person 7 的人中(这可能包括 person 3,4,5,6 以及 7),
最安静(有较低安静值 quiet[x])的人是 person 7。
其他的答案也可以用类似的推理来解释。
示例 2:
输入:richer = [], quiet = [0]
输出:[0]
方法一
题目分析
简单理解题目意思为:
richer = [[1,0],[2,1],[3,1],[3,7],[4,3],[5,3],[6,3]], quiet = [3,2,5,4,6,1,7,0]
比0有钱的有[1]
比1有钱的有[2, 3]
比3有钱的有[4, 5, 6]
比7有钱的有[3]
例如对于0来说,1,2,3,4,5,6都比他有钱,因此,要在自己外加六个人中找一个最低调的,也就是quiet最小的那一位
拓扑排序思想
把其中的人看作节点
容易想到的是通过构造这种 (更有钱关系)父子关系,来构成一个树,然后我们从上往下遍历即可
对于其中的任意一位,有很多个节点比这个节点有钱,这个节点也可能比很多节点有钱,因此情况是比较复杂的。
任意一个节点都要考虑,比其有钱的节点
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Cadl8od4-1639642973044)(media/16395537588481/16395547132673.jpg)]
从这个图直观的可以看出1,2,3,4节点都没有父节点,因此他们的值就是本身就好啦
而5号节点,只受到1号节点的影响,因此把1号节点去除的同时,根据情况修改5号节点的值即可。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1dOsg74b-1639642973053)(media/16395537588481/16395550481701.jpg)]
因此我们不断寻常入度为0的点移除
但是每次移除的同时要考虑更新对后续节点的影响
循环直到所有节点都没移除了
思路小结
由简入繁,一层层剥洋葱,把最外层的剥开,里面的就变成和外面一样的结构了
复杂度分析
我们对richer访问了一遍,构造拓扑排序,构建了每个节点的相互依赖关系以及入度
接着我们从入度为0的逐个访问,虽然顺序变化多端,但是每个节点才被访问一次,因此
时间复杂度:O(n+m),其中 n 是数组 quiet 的长度,m 是数组 richer 的长度。建图和拓扑排序的时间复杂度均为 O(n+m)。
空间复杂度:O(n+m)。我们需要 O(n+m) 的空间来记录图中所有的点和边。
Code
class Solution {
public int[] loudAndRich(int[][] richer, int[] quiet) {
//用来存储最小的people
int[] ans=new int[quiet.length];
//创建入度,其实创建一维数组就好啦,更新的时候用ans,不用额外保存最小的了
int[][] indegree=new int[quiet.length][3];//入度 当前下标 最小值
//创建边和点的映射关系
//在数据量小的情况,例如本题,可以直接创建ArrayList<Integer>[]数组
HashMap<Integer,ArrayList<Integer>> map=new HashMap<>();
for (int i = 0; i < indegree.length; i++) {
indegree[i][1]=i;
indegree[i][2]=i;
}
//建立队列,入度为0的点进入队列
Queue<int[]> queue=new LinkedList<>();
for (int i = 0; i < richer.length; i++) {
indegree[richer[i][1]][0]++;
if(map.containsKey(richer[i][0])){
map.get(richer[i][0]).add(richer[i][1]);
}else {
map.put(richer[i][0],new ArrayList<>());
map.get(richer[i][0]).add(richer[i][1]);
}
}
for (int i = 0; i < indegree.length; i++) {
if(indegree[i][0]==0){
queue.add(indegree[i]);
}
}
//System.out.println(queue);
while (!queue.isEmpty()){
int[] temp=queue.poll();
ans[temp[1]]=temp[2];
if(map.containsKey(temp[1])){
ArrayList<Integer> list=map.get(temp[1]);
for (int i = 0; i < list.size(); i++) {
if(quiet[temp[2]]<=quiet[indegree[list.get(i)][2]]){
//System.out.println(temp[2]);
indegree[list.get(i)][2]=temp[2];
}
if(--indegree[list.get(i)][0]==0){
queue.add(indegree[list.get(i)]);
}
}
}
}
return ans;
}
}
深度优先搜索
我们从一个点开始,看看周围更有钱的节点,找到更有钱的节点声音最小的那一个即可
Note:重点是我们要去对计算的进行保存,这样就不用重复计算了
例如我们遍历3节点,路径为3->5->7->11->18
那么我们不仅仅得到3节点最好的情况,也能得到5,7,11,18节点最好的情况
2->3->5->7->11->18接着遍历2节点的时候
发现3已经找到最好的情况了,那么就不用继续深入下去了
重点和难点是如何保存这最好的情况
我们创建一个辅助数组dp =new int[quiet.length];
- 如果一个节点没有父节点,那么
dp[i]=i
- 本身被访问过,即
if(dp[cur]!=-1){return ;}
- 如果一个节点有多个父节点
- 如果父节点被访问了那就直接比较
- 如果父节点没被访问继续BfsMin(父节点)
for (int i = 0; i < list.size(); i++) {
if(dp[list.get(i)]==-1){
BfsMin(list.get(i));//去寻找父亲节点最好的情况
}
if(quiet[dp[cur]]>quiet[dp[list.get(i)]]){
dp[cur]=dp[list.get(i)];
}
}
代码编写
class Solution {
HashMap<Integer, ArrayList<Integer>> map;
int[]quiet;
int[] dp;
public int[] loudAndRich(int[][] richer, int[] quiet) {
map=new HashMap<>();
this.quiet=quiet;
dp =new int[quiet.length];
for (int i = 0; i < dp.length; i++) {
dp[i]=-1;
}
for (int i = 0; i < richer.length; i++) {
if(map.containsKey(richer[i][1])){
map.get(richer[i][1]).add(richer[i][0]);
}else {
map.put(richer[i][1],new ArrayList<>());
map.get(richer[i][1]).add(richer[i][0]);
}
}
for (int i = 0; i < quiet.length; i++) {
BfsMin(i);
}
return dp;
}
public void BfsMin(int cur){
//System.out.println(cur);
if(dp[cur]!=-1){
return ;
}
if(!map.containsKey(cur)){
dp[cur]=cur;
return ;
}
ArrayList<Integer> list=map.get(cur);
dp[cur]=cur;
for (int i = 0; i < list.size(); i++) {
BfsMin(list.get(i));
if(quiet[dp[cur]]>quiet[dp[list.get(i)]]){
dp[cur]=dp[list.get(i)];
}
}
}
}