非递归算法求解斐波那契数列,C语言入门学习!

斐波那契数列可以使用非递归算法来求解,这样可以避免递归带来的性能问题,尤其是当 n 非常大时。一个常见的非递归算法是使用动态规划,其中我们维护两个变量来存储前两个斐波那契数,并迭代地计算下一个数。

C语言代码如下:

//斐波那契数列非递归算法
#include <stdio.h>

int fibonacci( int n) {  
	if (n <= 0) {  
		return 0; // 如果 n 不合法(比如负数),则返回 0  
	} else if (n == 1) {  
		return 1;
	}  
	
	int a = 0, b = 1, temp;  
	for (int i = 2; i <= n; ++i) {  
		temp = a + b;  
		a = b;  
		b = temp;  
	}  
	return b; // 返回第 n 项的值  
}  

int main() {  
    int n;
	scanf("%d", &n);  
	
	int result = fibonacci(n);  
	printf("%d", result);  
	
	return 0;  
}

这是使用非递归算法计算斐波那契数列的第 n 项,如果想获得前XX位斐波那契数列,在main函数里再写个for循环就好了,这里不再赘述。

我们来分析一下上述代码的时间复杂度。

我们可以观察到算法中有一个循环,该循环从 i = 2 运行到 i = n。在每次循环迭代中,我们执行了三次基本操作:一次加法、两次赋值。由于这些基本操作都是常数时间的,因此循环的总体时间复杂度与循环的次数成正比。

循环的次数是 n - 1(从 2 到 n),所以算法的时间复杂度是 O(n)。这意味着算法的运行时间随着 n 的增长而线性增长。

在对比递归算法(本专栏的其他文章中有写到,欢迎阅读:http://t.csdnimg.cn/2Z3av)时,非递归算法的时间复杂度是显著更优的。递归算法在计算大的斐波那契数时会有大量的重复计算。非递归算法则避免了这种重复计算,使得时间复杂度保持在线性级别。

因此,对于计算斐波那契数列,非递归算法是一个更高效的选择,特别是在处理大数值时。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_60643914

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值