多目标跟踪:
DeepSort算法解读
SIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRIC
论文:https://arxiv.org/pdf/1703.07402.pdf
代码:https://github.com/nwojke/deep_sort
概述
DeepSORT是SORT多目标跟踪算法的改进版本,设计了一种新的关联方式,提高了对长时间遮挡的对象追踪的准确率,减少了Id频繁切换的现象。
解决的问题:
tracking-by-detections是多目标跟踪算法的主流方式,流网络公式和概率图形模型的方式,把处理整个过程看作全局优化问题,但是不这种方式不适合online的任务。MHT、JPDAF基于逐帧的数据关联,但是计算代价较大,复杂度高。
SORT算法在传统算法的基础上,使用卡尔曼滤波处理每帧的关联性,利用匈牙利算法进行关联度量,使得其检测性能提升了几十倍。然而SORT算法的Id频繁切换的问题比较明显,也就是说SORT算法只适用于遮挡情况少的、运动比较稳定的对象。
DeepSort通过结合动作和外观信息的更准确的度量来实现关联度量,使用CNN网络提取特征,增加了对缺失和遮挡的鲁棒性,同时易于实现、高效,也适用于在线场景。
具体实现:
DeepSORT是SORT算法的增强版,针对多目标跟踪中的遮挡问题,通过结合运动和外观信息提高追踪准确性。它使用卡尔曼滤波进行状态估计,马氏距离和余弦距离进行匹配度量,并采用级联匹配策略优化。此外,DeepSORT利用预训练的CNN网络提取外观特征,增强了对遮挡和缺失的鲁棒性。
最低0.47元/天 解锁文章
512

被折叠的 条评论
为什么被折叠?



