python-pytorch seq2seq+luong dot attention笔记1.0.3

本文是一篇关于使用Python和PyTorch实现Seq2Seq模型配合Luong Attention机制的笔记,详细介绍了编码器、注意力机制、解码器的编写,以及模型训练和使用过程中的要点。在训练过程中,模型能在损失低于0.4时得到较好的预测结果。文章还讨论了训练和预测阶段输入尺寸不一致的问题及其解决方案,并提出了优化参数的建议。
摘要由CSDN通过智能技术生成

可复用部分

主要将数据弄成如下格式:
seq_example = [“你认识我吗”, “你住在哪里”, “你知道我的名字吗”, “你是谁”, “你会唱歌吗”, “你是张学友吗”]
seq_answer = [“当然认识”, “我住在成都”, “我不知道”, “我是机器人”, “我不会”, “肯定不是”]

同时设定embedding_size 、vocab_size、 hidden_size、 seq_len,实现word2index、index2word、encoder_input、decoder_input、target_input

代码如下:

# def getAQ():
#     ask=[]
#     answer=[]
#     with open("./data/flink.txt","r",encoding="utf-8") as f:
#         lines=f.readlines()
#         for line in lines:
#             ask.append(line.split("----")[0])
#             answer.append(line.split("----")[1].replace("\n",""))
#     return answer,ask

# seq_answer,seq_example=getAQ()



import torch
import torch.nn as nn
import torch.optim as optim
import jieba
import os
from tqdm import tqdm
 
seq_example = ["你认识我吗", "你住在哪里", "你知道我的名字吗", "你是谁", "你会唱歌吗", "你有父母吗"]
seq_answer = ["当然认识", "我住在成都", "我不知道", "我是机器人", "我不会", "我没有父母"]



# 所有词
example_cut = []
answer_cut = []
word_all = []
# 分词
for i in seq_example:
    example_cut.append(list(jieba.cut(i)))
for i in seq_answer:
    answer_cut.append(list(jieba.cut(i)))
#   所有词
for i in example_cut + answer_cut:
    for word in i:
        if word not in word_all:
            word_all.append(word)
# 词语索引表
word2index = {
   w: i+3 for i, w in enumerate(word_all)}
# 补全
word2index['PAD'] = 0
# 句子开始
word2index['SOS'] = 1
# 句子结束
word2index['EOS'] = 2
index2word = {
   value: key for key, value in word2index.items()}
# 一些参数
vocab_size = len(word2index)
seq_length = max([len(i) for i in example_cut + answer_cut]) + 1
print("vocab_size is",vocab_size,", seq_length is ",seq_length)
embedding_size = 128
num_classes = vocab_size
hidden_size = 256
batch_size=6
seq_len=
PyTorch是一种深度学习框架,可以用于实现序列到序列(seq2seq)的机器翻译任务。在seq2seq模型中,编码器将源序列编码为一个固定长度的向量,解码器则将该向量解码为目标序列。为了提高翻译质量,可以使用注意力机制来在解码器中引入上下文信息。 在PyTorch中实现seq2seq模型,可以使用nn.Module类来定义模型架构。首先,需要定义编码器和解码器的结构。编码器通常使用循环神经网络(RNN)或卷积神经网络(CNN)进行实现,而解码器则需要使用注意力机制。注意力机制可以使解码器关注输入序列中最相关的部分并根据其进行翻译。 实现注意力机制时,需要计算每个输入序列位置和当前解码器状态之间的相似度。这可以通过计算点积或使用神经网络来实现。然后,可以将相似度作为权重,对输入序列进行加权求和,以计算上下文向量。最后,将上下文向量与当前解码器状态组合在一起,以生成下一个目标序列符号的概率分布。 在训练过程中,可以使用交叉熵损失函数来计算模型输出与正确目标序列之间的差异,并使用反向传播算法更新模型参数。在推理过程中,可以使用贪婪搜索或束搜索来生成翻译结果。 总的来说,PyTorch提供了一种灵活且高效的方式来实现seq2seq模型和注意力机制,可以用于各种自然语言处理任务,包括机器翻译、问答系统和对话生成等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值