【LSTM分类】基于长短期记忆网络的数据分类预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于长短期记忆网络(Long Short-Term Memory, LSTM)的数据分类预测是一种常见的序列数据分析方法。LSTM是一种特殊的循环神经网络(Recurrent Neural Network, RNN),具有记忆单元和门控机制,能够更好地处理序列数据中的长期依赖关系。

下面是基于LSTM的数据分类预测的步骤:

  1. 数据准备:首先,需要准备用于分类预测的训练数据集和测试数据集。序列数据应具有标签,以便进行监督学习。

  2. LSTM模型搭建:构建LSTM模型。LSTM模型由多个LSTM层组成,每个LSTM层都有一个记忆单元和三个门控单元(输入门、遗忘门和输出门)。可以根据问题的复杂程度和数据的特点来设计合适的LSTM模型结构。

  3. 数据预处理:将输入序列数据进行适当的预处理,如标准化、归一化或序列填充等。这有助于提高模型的训练效果。

  4. 模型训练:使用训练数据集对LSTM模型进行训练。在每个时间步,将输入序列提供给LSTM模型,并根据实际标签计算损失函数。然后使用反向传播算法来更新模型的权重和偏置,以最小化损失函数。

  5. 模型评估:使用测试数据集对训练好的LSTM模型进行评估。将测试数据集输入到LSTM模型中,根据模型的输出进行分类预测,并与真实标签进行比较,计算模型的准确率、精确率、召回率、F1值等指标。

  6. 模型优化:根据评估结果,可以进行模型的优化,如调整LSTM层数、调整记忆单元大小、调整学习率等,以提高模型的性能和泛化能力。

基于LSTM的数据分类预测可以应用于各种序列数据的分类问题,如文本分类、时间序列预测、语音识别等。通过LSTM模型的记忆能力和门控机制,可以更好地捕捉序列数据中的长期依赖关系,提高预测准确性。

⛄ 代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[P_train, ps_input] = mapminmax(P_train, 0, 1);P_test = mapminmax('apply', P_test, ps_input);t_train = categorical(T_train)';t_test  = categorical(T_test )';%%  数据平铺% 将数据平铺成1维数据只是一种处理方式% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构% 但是应该始终和输入层数据结构保持一致P_train =  double(reshape(P_train, 12, 1, 1, M));P_test  =  double(reshape(P_test , 12, 1, 1, N));%%  数据格式转换for i = 1 : M    p_train{i, 1} = P_train(:, :, 1, i);endfor i = 1 : N    p_test{i, 1} = P_test( :, :, 1, i);end%%  创建网络layers = [ ...  sequenceInputLayer(12)               % 输入层    lstmLayer(6, 'OutputMode', 'last')   % LSTM层  reluLayer                            % Relu激活层    fullyConnectedLayer(4)               % 全连接层  softmaxLayer                         % 分类层  classificationLayer];%%  参数设置options = trainingOptions('adam', ...       % Adam 梯度下降算法    'MaxEpochs', 1000, ...                  % 最大迭代次数    'InitialLearnRate', 0.01, ...           % 初始学习率    'LearnRateSchedule', 'piecewise', ...   % 学习率下降    'LearnRateDropFactor', 0.1, ...         % 学习率下降因子    'LearnRateDropPeriod', 750, ...         % 经过 750 次训练后 学习率为 0.01 * 0.1    'Shuffle', 'every-epoch', ...           % 每次训练打乱数据集    'ValidationPatience', Inf, ...          % 关闭验证    'Plots', 'training-progress', ...       % 画出曲线    'Verbose', false);%%  训练模型net = trainNetwork(p_train, t_train, layers, options);%%  仿真预测t_sim1 = predict(net, p_train); t_sim2 = predict(net, p_test ); %%  数据反归一化T_sim1 = vec2ind(t_sim1');T_sim2 = vec2ind(t_sim2');%%  性能评价error1 = sum((T_sim1 == T_train)) / M * 100 ;error2 = sum((T_sim2 == T_test )) / N * 100 ;%%  查看网络结构analyzeNetwork(net)%%  数据排序[T_train, index_1] = sort(T_train);[T_test , index_2] = sort(T_test );T_sim1 = T_sim1(index_1);T_sim2 = T_sim2(index_2);%%  绘图figureplot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};title(string)xlim([1, M])gridfigureplot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)legend('真实值', '预测值')xlabel('预测样本')ylabel('预测结果')string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};title(string)xlim([1, N])grid%%  混淆矩阵figurecm = confusionchart(T_train, T_sim1);cm.Title = 'Confusion Matrix for Train Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';    figurecm = confusionchart(T_test, T_sim2);cm.Title = 'Confusion Matrix for Test Data';cm.ColumnSummary = 'column-normalized';cm.RowSummary = 'row-normalized';

⛄ 运行结果

⛄ 参考文献

[1] 徐一轩,伍卫国,王思敏,等.基于长短期记忆网络(LSTM)的数据中心温度预测算法[J].计算机技术与发展, 2019, 29(12):7.DOI:10.3969/j.issn.1673-629X.2019.12.001.

[2] 曹宇,张静萍,魏海平,et al.基于长短期记忆网络LSTM模型的新冠病毒传播预测方法:CN202110405335.1[P].CN202110405335.1[2023-07-26].

[3] 魏昱洲,许西宁.基于LSTM长短期记忆网络的超短期风速预测[J].电子测量与仪器学报, 2019(2):8.DOI:CNKI:SUN:DZIY.0.2019-02-008.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值