✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
基于长短期记忆网络(Long Short-Term Memory, LSTM)的数据分类预测是一种常见的序列数据分析方法。LSTM是一种特殊的循环神经网络(Recurrent Neural Network, RNN),具有记忆单元和门控机制,能够更好地处理序列数据中的长期依赖关系。
下面是基于LSTM的数据分类预测的步骤:
-
数据准备:首先,需要准备用于分类预测的训练数据集和测试数据集。序列数据应具有标签,以便进行监督学习。
-
LSTM模型搭建:构建LSTM模型。LSTM模型由多个LSTM层组成,每个LSTM层都有一个记忆单元和三个门控单元(输入门、遗忘门和输出门)。可以根据问题的复杂程度和数据的特点来设计合适的LSTM模型结构。
-
数据预处理:将输入序列数据进行适当的预处理,如标准化、归一化或序列填充等。这有助于提高模型的训练效果。
-
模型训练:使用训练数据集对LSTM模型进行训练。在每个时间步,将输入序列提供给LSTM模型,并根据实际标签计算损失函数。然后使用反向传播算法来更新模型的权重和偏置,以最小化损失函数。
-
模型评估:使用测试数据集对训练好的LSTM模型进行评估。将测试数据集输入到LSTM模型中,根据模型的输出进行分类预测,并与真实标签进行比较,计算模型的准确率、精确率、召回率、F1值等指标。
-
模型优化:根据评估结果,可以进行模型的优化,如调整LSTM层数、调整记忆单元大小、调整学习率等,以提高模型的性能和泛化能力。
基于LSTM的数据分类预测可以应用于各种序列数据的分类问题,如文本分类、时间序列预测、语音识别等。通过LSTM模型的记忆能力和门控机制,可以更好地捕捉序列数据中的长期依赖关系,提高预测准确性。
⛄ 代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
t_train = categorical(T_train)';
t_test = categorical(T_test )';
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
P_train = double(reshape(P_train, 12, 1, 1, M));
P_test = double(reshape(P_test , 12, 1, 1, N));
%% 数据格式转换
for i = 1 : M
p_train{i, 1} = P_train(:, :, 1, i);
end
for i = 1 : N
p_test{i, 1} = P_test( :, :, 1, i);
end
%% 创建网络
layers = [ ...
sequenceInputLayer(12) % 输入层
lstmLayer(6, 'OutputMode', 'last') % LSTM层
reluLayer % Relu激活层
fullyConnectedLayer(4) % 全连接层
softmaxLayer % 分类层
classificationLayer];
%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法
'MaxEpochs', 1000, ... % 最大迭代次数
'InitialLearnRate', 0.01, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率下降
'LearnRateDropFactor', 0.1, ... % 学习率下降因子
'LearnRateDropPeriod', 750, ... % 经过 750 次训练后 学习率为 0.01 * 0.1
'Shuffle', 'every-epoch', ... % 每次训练打乱数据集
'ValidationPatience', Inf, ... % 关闭验证
'Plots', 'training-progress', ... % 画出曲线
'Verbose', false);
%% 训练模型
net = trainNetwork(p_train, t_train, layers, options);
%% 仿真预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%% 数据反归一化
T_sim1 = vec2ind(t_sim1');
T_sim2 = vec2ind(t_sim2');
%% 性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;
%% 查看网络结构
analyzeNetwork(net)
%% 数据排序
[T_train, index_1] = sort(T_train);
[T_test , index_2] = sort(T_test );
T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
grid
figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid
%% 混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
⛄ 运行结果
⛄ 参考文献
[1] 徐一轩,伍卫国,王思敏,等.基于长短期记忆网络(LSTM)的数据中心温度预测算法[J].计算机技术与发展, 2019, 29(12):7.DOI:10.3969/j.issn.1673-629X.2019.12.001.
[2] 曹宇,张静萍,魏海平,et al.基于长短期记忆网络LSTM模型的新冠病毒传播预测方法:CN202110405335.1[P].CN202110405335.1[2023-07-26].
[3] 魏昱洲,许西宁.基于LSTM长短期记忆网络的超短期风速预测[J].电子测量与仪器学报, 2019(2):8.DOI:CNKI:SUN:DZIY.0.2019-02-008.