✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
在机器人技术的发展中,路径规划算法是一个至关重要的领域。它涉及到如何使机器人在给定的环境中找到最佳的路径以完成任务。路径规划算法的目标是在考虑到各种约束条件的情况下,找到一条最短、最快或最经济的路径。在本文中,我们将探讨一种基于减法平均优化的机器人路径规划算法。
减法平均优化是一种常用的优化方法,它通过不断减小目标函数的值来寻找最优解。在路径规划中,目标函数可以是路径的长度、时间或成本。算法的基本思想是从起点开始,通过不断地减小目标函数的值,逐步接近最优解。
在这种算法中,首先需要将环境建模为一个图。图的节点表示机器人可以到达的位置,边表示两个位置之间的连接。然后,根据环境的特点,为每个节点分配一个初始的目标函数值。这个目标函数值可以是到达终点的距离、时间或成本的估计值。
接下来,算法会从起点开始,根据当前位置的目标函数值选择一个相邻节点作为下一步的目标。选择的依据可以是目标函数值最小或最大的节点。然后,算法会更新目标函数值,以反映从当前位置到达下一步目标的代价。这个代价可以根据路径的长度、时间或成本进行计算。
算法会不断地重复选择目标节点和更新目标函数值的过程,直到到达终点。在每一步中,算法都会考虑到当前位置和目标节点之间的约束条件,如避免碰撞、遵守交通规则等。这些约束条件可以通过在目标函数值中引入惩罚项来实现。
基于减法平均优化的机器人路径规划算法具有以下优点:
-
算法可以在考虑到各种约束条件的情况下找到最优解。无论是避免碰撞还是遵守交通规则,算法都能够根据具体情况进行调整。
-
算法的运行时间相对较短。由于算法是基于减法平均优化的,它会不断地减小目标函数的值,从而逐步接近最优解。这使得算法能够在较短的时间内找到一个较好的路径。
-
算法的结果具有较高的可行性。由于算法在每一步中都会考虑到约束条件,它能够生成一条可行的路径,从而确保机器人能够成功地完成任务。
尽管基于减法平均优化的机器人路径规划算法具有许多优点,但也存在一些挑战和限制。首先,算法的性能受到环境建模的影响。如果环境的模型不准确或不完整,算法可能会生成一个次优的路径。其次,算法对于大规模问题的求解可能会面临计算资源的限制。
总之,基于减法平均优化的机器人路径规划算法是一种有效的方法,可以在考虑到各种约束条件的情况下找到最优解。它在机器人技术的发展中具有重要的应用前景。随着算法的不断优化和改进,相信它将在未来的机器人路径规划中发挥更大的作用。
室内环境栅格法建模步骤
1.栅格粒大小的选取
栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。
栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。
2.障碍物栅格确定
当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.
3.未知环境的栅格地图的建立
通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。
备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。
目标函数设定
⛄ 部分代码
function drawPath(path,G,flag)
%%%%
xGrid=size(G,2);
drawShanGe(G,flag)
hold on
set(gca,'XtickLabel','')
set(gca,'YtickLabel','')
L=size(path,1);
Sx=path(1,1)-0.5;
Sy=path(1,2)-0.5;
plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5); % 起点
for i=1:L-1
plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)
hold on
end
Ex=path(end,1)-0.5;
Ey=path(end,2)-0.5;
plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5); % 终点
⛄ 运行结果
⛄ 参考文献
[1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].
[2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.
[3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).