基于减法平均优化算法实现栅格地图机器人路径规划附matlab代码 标准

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

在机器人技术的发展中,路径规划算法是一个至关重要的领域。它涉及到如何使机器人在给定的环境中找到最佳的路径以完成任务。路径规划算法的目标是在考虑到各种约束条件的情况下,找到一条最短、最快或最经济的路径。在本文中,我们将探讨一种基于减法平均优化的机器人路径规划算法。

减法平均优化是一种常用的优化方法,它通过不断减小目标函数的值来寻找最优解。在路径规划中,目标函数可以是路径的长度、时间或成本。算法的基本思想是从起点开始,通过不断地减小目标函数的值,逐步接近最优解。

在这种算法中,首先需要将环境建模为一个图。图的节点表示机器人可以到达的位置,边表示两个位置之间的连接。然后,根据环境的特点,为每个节点分配一个初始的目标函数值。这个目标函数值可以是到达终点的距离、时间或成本的估计值。

接下来,算法会从起点开始,根据当前位置的目标函数值选择一个相邻节点作为下一步的目标。选择的依据可以是目标函数值最小或最大的节点。然后,算法会更新目标函数值,以反映从当前位置到达下一步目标的代价。这个代价可以根据路径的长度、时间或成本进行计算。

算法会不断地重复选择目标节点和更新目标函数值的过程,直到到达终点。在每一步中,算法都会考虑到当前位置和目标节点之间的约束条件,如避免碰撞、遵守交通规则等。这些约束条件可以通过在目标函数值中引入惩罚项来实现。

基于减法平均优化的机器人路径规划算法具有以下优点:

  1. 算法可以在考虑到各种约束条件的情况下找到最优解。无论是避免碰撞还是遵守交通规则,算法都能够根据具体情况进行调整。

  2. 算法的运行时间相对较短。由于算法是基于减法平均优化的,它会不断地减小目标函数的值,从而逐步接近最优解。这使得算法能够在较短的时间内找到一个较好的路径。

  3. 算法的结果具有较高的可行性。由于算法在每一步中都会考虑到约束条件,它能够生成一条可行的路径,从而确保机器人能够成功地完成任务。

尽管基于减法平均优化的机器人路径规划算法具有许多优点,但也存在一些挑战和限制。首先,算法的性能受到环境建模的影响。如果环境的模型不准确或不完整,算法可能会生成一个次优的路径。其次,算法对于大规模问题的求解可能会面临计算资源的限制。

总之,基于减法平均优化的机器人路径规划算法是一种有效的方法,可以在考虑到各种约束条件的情况下找到最优解。它在机器人技术的发展中具有重要的应用前景。随着算法的不断优化和改进,相信它将在未来的机器人路径规划中发挥更大的作用。

室内环境栅格法建模步骤

1.栅格粒大小的选取

栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。

栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。

2.障碍物栅格确定

当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.

3.未知环境的栅格地图的建立

通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。

备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。

目标函数设定

⛄ 部分代码

function drawPath(path,G,flag)%%%%xGrid=size(G,2);drawShanGe(G,flag)hold onset(gca,'XtickLabel','')set(gca,'YtickLabel','')L=size(path,1);Sx=path(1,1)-0.5;Sy=path(1,2)-0.5;plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5);   % 起点for i=1:L-1    plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)    hold onendEx=path(end,1)-0.5;Ey=path(end,2)-0.5;plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5);   % 终点

⛄ 运行结果

⛄ 参考文献

[1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].

[2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.

[3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值