✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
图像配准是计算机视觉领域中的一个重要问题,它涉及到将多幅图像进行对齐,使得它们在空间上相互匹配。在许多应用中,如医学图像处理、遥感图像处理和计算机辅助设计等领域,图像配准都扮演着至关重要的角色。本文将介绍一种基于互信息值的图像配准算法流程。
图像配准的目标是找到两幅或多幅图像之间的最佳转换关系,以便它们在特定的空间坐标系中对齐。这个问题的关键在于如何度量图像之间的相似性。在传统的图像配准方法中,常用的相似性度量包括均方差、互相关和互信息等。而本文将重点介绍互信息值作为相似性度量的图像配准算法。
互信息是信息论中的一个概念,用于度量两个随机变量之间的相关性。在图像配准中,我们可以将两幅图像看作是两个随机变量,通过计算它们的互信息值来衡量它们之间的相似性。互信息值越大,表示两幅图像之间的相关性越高,配准的效果也就越好。
基于互信息值的图像配准算法流程一般可以分为以下几个步骤:
-
图像预处理:首先,对待配准的图像进行预处理,包括去噪、平滑和直方图均衡化等操作。这些预处理步骤可以提高图像的质量,减少配准过程中的误差。
-
特征提取:接下来,从预处理后的图像中提取特征。常用的特征包括角点、边缘和纹理等。这些特征可以用来描述图像的结构和内容,从而更好地进行配准。
-
特征匹配:将待配准图像中提取的特征与参考图像中的特征进行匹配。这一步骤的目标是找到两幅图像中相对应的特征点。常用的匹配算法包括最近邻算法和RANSAC算法等。
-
相似性度量:计算特征匹配结果的相似性度量,即计算互信息值。互信息值可以通过计算特征点的空间距离和灰度值之间的相关性来得到。
-
优化与迭代:根据相似性度量的结果,对图像进行优化和迭代。这一步骤的目标是找到最佳的转换关系,使得图像能够在空间上对齐。
-
结果评估:最后,对配准结果进行评估。评估指标可以包括互信息值、重叠度和均方差等。通过评估结果,可以判断配准算法的性能和准确性。
总结起来,基于互信息值的图像配准算法流程是一个复杂而庞大的过程。它涉及到图像预处理、特征提取、特征匹配、相似性度量、优化与迭代以及结果评估等多个步骤。通过这些步骤的有机组合,我们可以得到一幅或多幅图像的最佳配准结果。这种基于互信息值的图像配准算法在许多领域都有着广泛的应用前景,对于提高图像处理和分析的准确性和效率具有重要意义。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 何永亮.基于特征点和TPE两点熵的图像配准技术研究[D].华中师范大学,2016.
[2] 何永亮.基于特征点和TPE两点熵的图像配准技术研究[D].华中师范大学[2023-11-07].
[3] 杨帆.基于互信息的多模医学图像配准方法研究[D].湖南大学[2023-11-07].DOI:10.7666/d.y892015.