多元回归预测|基于黏菌算法优化鲁棒极限学习SMA-RELM实现风速回归预测附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在风力发电领域,准确预测风速对于提高风力发电的效率至关重要。因此,研究人员不断探索各种风速回归预测算法,以提高预测精度和稳定性。本文将介绍一种基于黏菌算法优化鲁棒极限学习SMA-RELM实现风速回归预测的算法流程。

首先,让我们来了解一下黏菌算法。黏菌算法是一种模拟自然界黏菌在寻找食物过程中的行为而设计的一种优化算法。它模拟了黏菌在环境中释放化学物质寻找食物的过程,通过化学物质浓度的变化来更新解空间中的候选解。这种算法具有全局寻优能力强、收敛速度快等特点,适用于复杂的优化问题。

接下来,我们来介绍鲁棒极限学习机(RELM)。RELM是一种新型的单隐层前馈神经网络,具有学习速度快、泛化能力强等特点。它通过随机初始化输入层到隐含层的连接权重和隐含层到输出层的连接权重,然后固定隐含层到输出层的连接权重,只学习输入层到隐含层的连接权重。这种特殊的结构使得RELM在训练过程中不需要调节隐含层到输出层的连接权重,大大提高了训练速度和泛化能力。

结合黏菌算法和RELM,我们提出了SMA-RELM算法,即基于黏菌算法优化的鲁棒极限学习机。SMA-RELM算法在初始化阶段使用黏菌算法优化初始连接权重,然后采用RELM的学习方法进行参数优化。这种算法结合了黏菌算法的全局寻优能力和RELM的快速学习速度,能够更好地应用于风速回归预测问题中。

下面,我们将介绍SMA-RELM算法实现风速回归预测的具体流程。首先,我们需要收集风速数据,并进行预处理和特征提取。然后,利用黏菌算法优化初始化连接权重,并使用RELM算法进行参数优化。接着,我们将训练好的模型应用于风速回归预测,并评估预测精度和稳定性。最后,根据评估结果对模型进行调优和改进。

总之,基于黏菌算法优化的鲁棒极限学习SMA-RELM算法是一种有效的风速回归预测方法。它充分利用了黏菌算法的全局寻优能力和RELM算法的快速学习速度,能够提高风速预测的精度和稳定性,对于风力发电领域具有重要的应用价值。希望本文能够对相关研究和实践工作提供一定的参考和帮助。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 周孟然,凌胜,来文豪,等.基于黏菌优化极限学习机的煤矸石多光谱识别[J].[2023-11-10].

[2] 江礼凯,周志宇,李清木.基于粒子群算法优化正则化极限学习机的纺织品色差检测[J].  2017.

[3] 王粲夏元清邹伟东.基于自适应动量优化算法的正则化极限学习机[J].计算机应用研究, 2021, 038(006):1724-1727,1764.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值