✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在风力发电领域,准确预测风速对于提高风力发电的效率至关重要。因此,研究人员不断探索各种风速回归预测算法,以提高预测精度和稳定性。本文将介绍一种基于黏菌算法优化鲁棒极限学习SMA-RELM实现风速回归预测的算法流程。
首先,让我们来了解一下黏菌算法。黏菌算法是一种模拟自然界黏菌在寻找食物过程中的行为而设计的一种优化算法。它模拟了黏菌在环境中释放化学物质寻找食物的过程,通过化学物质浓度的变化来更新解空间中的候选解。这种算法具有全局寻优能力强、收敛速度快等特点,适用于复杂的优化问题。
接下来,我们来介绍鲁棒极限学习机(RELM)。RELM是一种新型的单隐层前馈神经网络,具有学习速度快、泛化能力强等特点。它通过随机初始化输入层到隐含层的连接权重和隐含层到输出层的连接权重,然后固定隐含层到输出层的连接权重,只学习输入层到隐含层的连接权重。这种特殊的结构使得RELM在训练过程中不需要调节隐含层到输出层的连接权重,大大提高了训练速度和泛化能力。
结合黏菌算法和RELM,我们提出了SMA-RELM算法,即基于黏菌算法优化的鲁棒极限学习机。SMA-RELM算法在初始化阶段使用黏菌算法优化初始连接权重,然后采用RELM的学习方法进行参数优化。这种算法结合了黏菌算法的全局寻优能力和RELM的快速学习速度,能够更好地应用于风速回归预测问题中。
下面,我们将介绍SMA-RELM算法实现风速回归预测的具体流程。首先,我们需要收集风速数据,并进行预处理和特征提取。然后,利用黏菌算法优化初始化连接权重,并使用RELM算法进行参数优化。接着,我们将训练好的模型应用于风速回归预测,并评估预测精度和稳定性。最后,根据评估结果对模型进行调优和改进。
总之,基于黏菌算法优化的鲁棒极限学习SMA-RELM算法是一种有效的风速回归预测方法。它充分利用了黏菌算法的全局寻优能力和RELM算法的快速学习速度,能够提高风速预测的精度和稳定性,对于风力发电领域具有重要的应用价值。希望本文能够对相关研究和实践工作提供一定的参考和帮助。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 周孟然,凌胜,来文豪,等.基于黏菌优化极限学习机的煤矸石多光谱识别[J].[2023-11-10].
[2] 江礼凯,周志宇,李清木.基于粒子群算法优化正则化极限学习机的纺织品色差检测[J]. 2017.
[3] 王粲夏元清邹伟东.基于自适应动量优化算法的正则化极限学习机[J].计算机应用研究, 2021, 038(006):1724-1727,1764.