✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要
变分模态分解(VMD)是一种自适应信号分解方法,它能够将信号分解为一组固有模态函数(IMF)和残差。VMD算法具有良好的时频分辨率,能够有效地提取信号中的有用信息。然而,VMD算法也存在一些问题,例如分解结果容易受到噪声的影响,分解精度不高。
为了解决这些问题,本文提出了一种基于黏菌算法优化变分模态分解(SMA-VMD)的信号去噪方法。该方法将黏菌算法应用于VMD算法的参数优化,通过优化VMD算法的参数,提高VMD算法的分解精度和抗噪声能力。
黏菌算法
黏菌算法(MSA)是一种受黏菌觅食行为启发的优化算法。黏菌算法具有良好的全局搜索能力和局部搜索能力,能够有效地求解复杂优化问题。
黏菌算法的基本原理如下:
-
初始化:随机生成一定数量的黏菌个体,并将这些个体均匀地分布在搜索空间中。
-
觅食:每个黏菌个体根据自己的位置和周围环境信息,移动到一个新的位置。
-
繁殖:当黏菌个体找到食物后,它会繁殖出新的个体。
-
死亡:当黏菌个体找不到食物时,它会死亡。
-
重复步骤2-4,直到满足终止条件。
基于黏菌算法优化变分模态分解(SMA-VMD)
SMA-VMD算法的基本步骤如下:
-
初始化:随机生成一定数量的黏菌个体,并将这些个体均匀地分布在VMD算法的参数空间中。
-
觅食:每个黏菌个体根据自己的位置和周围环境信息,移动到一个新的位置。
-
评估:计算每个黏菌个体对应位置的VMD算法的分解精度。
-
繁殖:当黏菌个体找到一个分解精度较高的位置时,它会繁殖出新的个体。
-
死亡:当黏菌个体找到一个分解精度较低的位置时,它会死亡。
-
重复步骤2-5,直到满足终止条件。
-
选择最优参数:从所有黏菌个体中选择分解精度最高的个体,并将该个体对应的位置作为VMD算法的最优参数。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
正在上传…重新上传取消
实验结果
为了验证SMA-VMD算法的性能,我们将其与VMD算法和EMD算法进行了比较。实验结果表明,SMA-VMD算法在信号去噪方面具有更好的性能。
图1给出了VMD算法、EMD算法和SMA-VMD算法对一个噪声信号的分解结果。从图1可以看出,SMA-VMD算法能够有效地将噪声信号分解为一组IMF和残差,并且分解结果具有良好的时频分辨率。
图2给出了VMD算法、EMD算法和SMA-VMD算法对一个噪声信号的去噪结果。从图2可以看出,SMA-VMD算法能够有效地去除噪声,并且去噪后的信号具有较高的信噪比。
结论
本文提出了一种基于黏菌算法优化变分模态分解(SMA-VMD)的信号去噪方法。该方法将黏菌算法应用于VMD算法的参数优化,通过优化VMD算法的参数,提高VMD算法的分解精度和抗噪声能力。实验结果表明,SMA-VMD算法在信号去噪方面具有更好的性能。