✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
扩频通信技术是一种通过将信息信号扩展到比原始带宽宽得多的频带中来提高通信性能的技术。直接序列扩频 (DSSS) 是扩频通信中最常用的技术之一,它通过将信息信号与一个称为伪随机噪声 (PN) 码的宽带噪声序列进行乘法运算来实现扩频。
本文将介绍基于 DSSS BPSK 调制的通信系统仿真。该仿真使用 MATLAB 实现,并评估了系统在不同信噪比 (SNR) 和多径衰落条件下的性能。
扩频通信原理
扩频通信的基本原理是通过将信息信号扩展到一个比原始带宽宽得多的频带中来提高通信性能。这可以防止干扰和多径衰落,并提高系统的抗噪声能力。
DSSS 是扩频通信中最常用的技术之一。在 DSSS 中,信息信号与一个称为 PN 码的宽带噪声序列进行乘法运算。PN 码是一个具有伪随机特性的二进制序列,其带宽远大于信息信号的带宽。通过将信息信号与 PN 码相乘,信息信号的带宽被扩展到 PN 码的带宽。
DSSS BPSK 调制
DSSS BPSK 调制是将 DSSS 技术应用于二进制相移键控 (BPSK) 调制的一种技术。在 DSSS BPSK 调制中,信息信号首先与一个 PN 码进行乘法运算,然后使用 BPSK 调制器进行调制。
BPSK 调制器将信息信号转换为两个不同的载波相位,分别表示二进制 0 和 1。通过将 DSSS 扩展后的信号与 BPSK 调制信号相乘,可以得到最终的 DSSS BPSK 调制信号。
通信系统仿真
为了评估 DSSS BPSK 调制通信系统的性能,我们使用 MATLAB 进行了仿真。仿真系统包括以下组件:
-
信息源:产生二进制信息序列。
-
PN 码发生器:产生 PN 码序列。
-
DSSS 调制器:将信息信号与 PN 码相乘。
-
BPSK 调制器:将 DSSS 扩展后的信号转换为 BPSK 调制信号。
-
信道:引入信噪比和多径衰落。
-
BPSK 解调器:将接收到的信号解调为二进制信息序列。
-
PN 码匹配滤波器:与 PN 码发生器中的 PN 码进行匹配滤波,以恢复信息信号。
仿真结果
我们评估了系统在不同 SNR 和多径衰落条件下的性能。仿真结果表明:
-
**SNR 影响:**随着 SNR 的增加,系统的误比特率 (BER) 降低。在高 SNR 条件下,系统可以实现非常低的 BER。
-
**多径衰落影响:**多径衰落会增加系统的 BER。然而,DSSS 技术可以减轻多径衰落的影响,并提高系统的抗衰落能力。
结论
本文介绍了基于 DSSS BPSK 调制的通信系统仿真。仿真结果表明,该系统在不同 SNR 和多径衰落条件下具有良好的性能。DSSS 技术可以有效地提高通信系统的抗噪声和抗衰落能力。
📣 部分代码
% ************************beginning of file********************************
%
% Note : 此函数用于实现线性移位寄存器的移位操作
% Parameters:
% inrege 向量或矩阵
% shiftr 右移量
% shiftu 顶部移位量
% outregi 寄存器的输出
%**************************************************************************
function [outregi] = shift(inregi,shiftr,shiftu)
[h, v] = size(inregi);
outregi = inregi;
%取模的周期
shiftr = rem(shiftr,v);%序列横向位移
shiftu = rem(shiftu,h);%当多用户,输入序列为矩阵时,纵向位移
if shiftr > 0
outregi(:,1:shiftr) = inregi(:,v-shiftr+1:v);
outregi(:,1+shiftr:v) = inregi(:,1:v-shiftr);
elseif shiftr < 0
outregi(:,1:v+shiftr) = inregi(:,1-shiftr:v);
outregi(:,v+shiftr+1:v) = inregi(:,1:-shiftr);
end
inregi = outregi;
if shiftu > 0
outregi(1:h-shiftu,:) = inregi(1+shiftu:h,:);
outregi(h-shiftu+1:h,:) = inregi(1:shiftu,:);
elseif shiftu < 0
outregi(1:-shiftu,:) = inregi(h+shiftu+1:h,:);
outregi(1-shiftu:h,:) = inregi(1:h+shiftu,:);
end
%************************end of file***************************************
⛳️ 运行结果
🔗 参考文献
[1]张蕾,郑实勤.基于MATLAB的直接序列扩频通信系统性能仿真分析研究[J].电气传动自动化, 2007(3):39-42.DOI:10.3969/j.issn.1005-7277.2007.03.010.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类