✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
报童问题是一个经典的库存管理问题,描述了一个报童每天早上决定订购多少份报纸出售。报童面临的不确定性是报纸的需求,需求每天都是随机的。如果报童订购的报纸少于需求,他将失去潜在的收入;如果他订购的报纸多于需求,他将不得不以较低的价格出售剩余的报纸,从而蒙受损失。
仿真模型
为了仿真报童问题,我们使用蒙特卡罗模拟。蒙特卡罗模拟是一种基于随机抽样的技术,用于模拟随机过程。在我们的仿真中,我们使用随机数生成器来模拟报纸的需求。
输入参数
仿真模型需要以下输入参数:
-
**需求分布:**报纸需求的概率分布。通常假设为泊松分布或负二项分布。
-
**订购成本:**订购一份报纸的成本。
-
**销售价格:**一份报纸的销售价格。
-
**剩余报纸的售价:**如果报童订购的报纸多于需求,剩余报纸的售价。
-
**仿真期:**仿真运行的天数。
仿真步骤
仿真模型遵循以下步骤:
-
**初始化:**设置报童的初始订购量、需求分布和其他输入参数。
-
**生成需求:**使用随机数生成器生成报纸的需求。
-
**计算收益:**根据报童的订购量、需求和输入参数计算报童的收益。
-
**更新订购量:**根据上一天的收益和需求,更新报童的订购量。
-
**重复步骤 2-4:**重复上述步骤,直到仿真期结束。
仿真结果
仿真结果包括报童的平均收益、订购量的分布以及其他统计数据。这些结果可以用来分析报童问题的不同方面,例如:
-
**最佳订购量:**确定报童的最佳订购量,以最大化其收益。
-
**订购量波动:**评估报童订购量的波动性,并确定导致波动性的因素。
-
**需求不确定性的影响:**研究需求不确定性对报童收益的影响。
仿真应用
报童问题仿真在库存管理实践中有着广泛的应用,包括:
-
**优化订购策略:**确定最佳订购量和订购策略,以最大化库存收益。
-
**评估库存风险:**评估库存短缺或过剩的风险,并制定缓解措施。
-
**预测未来需求:**使用仿真来预测未来的需求,并制定相应的库存计划。
结论
报童问题仿真是一个强大的工具,用于分析和优化库存管理策略。通过模拟报纸需求的不确定性,仿真模型可以帮助企业确定最佳订购量,评估风险并预测未来需求。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类