✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
基于混沌的图像加密算法已广泛应用于各个行业,但许多基于低维混沌的图像加密算法,导致这些加密算法的安全性不能满足要求。为了解决该挑战,本文提出了一种基于6D高维混沌系统和DNA编码技术的图像加密算法。首先,通过多个随机混沌序列对原始图像序列进行扩散和置乱。其次,在DNA层面上通过不同的混沌序列对生成的序列进行扩散和置乱。最后,将不同的编码序列组合成加密图像。实验结果表明,与参考算法相比,该算法在图像熵(值无限接近于8)、像素相关性和图像复杂性(密钥空间大于2300)方面具有一定优势,同时对几何攻击和截断攻击具有良好的鲁棒性。
引言
随着数字图像处理技术的发展,图像加密在信息安全领域变得越来越重要。混沌加密算法因其良好的扩散性和混淆性而成为图像加密的研究热点。然而,传统的低维混沌系统加密算法存在密钥空间小、安全性低等问题。
基于6D高维混沌系统的图像加密算法
为了解决低维混沌系统加密算法的不足,本文提出了一种基于6D高维混沌系统的图像加密算法。该算法采用6D高维混沌系统作为伪随机序列发生器,并结合DNA编码技术,增强了算法的安全性。
算法步骤
该算法的步骤如下:
-
**密钥生成:**生成6个初始值和控制参数,构成6D高维混沌系统的密钥。
-
**图像预处理:**将原始图像转换为二值图像,并将其划分为8×8像素块。
-
**扩散:**使用6个混沌序列对每个像素块进行扩散,改变像素值。
-
**置乱:**使用不同的混沌序列对扩散后的像素块进行置乱,改变像素位置。
-
**DNA编码:**将置乱后的像素块转换为DNA序列,并使用不同的混沌序列对DNA序列进行扩散和置乱。
-
**图像重构:**将不同的编码序列组合成加密图像。
实验结果
为了评估该算法的性能,我们进行了以下实验:
-
**图像熵:**加密图像的图像熵接近8,表明算法具有良好的随机性。
-
**像素相关性:**加密图像的像素相关性很低,表明算法具有良好的混淆性。
-
**图像复杂性:**加密图像的密钥空间大于2300,表明算法具有较高的安全性。
-
**鲁棒性:**加密图像对几何攻击和截断攻击具有良好的鲁棒性,表明算法具有较强的抗攻击性。
结论
本文提出的基于6D高维混沌系统的图像加密算法具有良好的图像熵、像素相关性、图像复杂性和鲁棒性。该算法可以有效地保护图像数据安全,适用于各种图像加密应用场景。
📣 部分代码
function entropy_arr = analyse_entropy(img)
%{
===============================================
analyse_entropy
===============================================
Definition:
Entropy in information theory is directly analogous to the entropy
in statistical thermodynamics. The analogy results when the values of
the random variable designate energies of microstates,
so Gibbs formula for the entropy is formally identical to Shannon's formula.
Application:
The function analyse_entropy is used to caculate the entropy of one
photo, the variable indicates the encryption algorithm is good or bad.
%}
entropy_arr = zeros(1,3);
function entropy = analyse_one_entropy(one_img)
one_img = double(one_img);
[M,N] = size(one_img);
one_img = transpose(one_img(:));
T = zeros(1, 256);
for i = 1: 256
T(i) = sum(one_img == (i-1));
T(i) = T(i)/(M*N);
end
entropy = -T(T>0)*transpose(log2(T(T>0)));
end
entropy_arr(1) = analyse_one_entropy(img(:,:,1));
entropy_arr(2) = analyse_one_entropy(img(:,:,2));
entropy_arr(3) = analyse_one_entropy(img(:,:,3));
end
⛳️ 运行结果
🔗 参考文献
Li, Q., Chen, L. An image encryption algorithm based on 6-dimensional hyper chaotic system and DNA encoding. Multimed Tools Appl 83, 5351–5368 (2024). https://doi.org/10.1007/s11042-023-15550-3
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类