✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
随着计算机技术的飞速发展,图像处理技术在各个领域得到广泛应用。图像退化是指图像在采集、传输或存储过程中受到各种因素的影响,导致图像质量下降,信息丢失。图像复原技术旨在通过对退化图像进行处理,恢复其原始信息,提高图像质量。
近年来,人工神经网络在图像处理领域取得了显著成果,其中BP神经网络因其结构简单、易于训练等特点,被广泛应用于图像复原任务。本文将基于BP神经网络,对退化灰色图像进行复原研究。
1. 退化灰色图像模型
退化灰色图像模型可以表示为:
2. BP神经网络模型
BP神经网络是一种多层前馈神经网络,由输入层、隐含层和输出层组成。每个神经元接收来自上一层神经元的信号,并进行加权求和和非线性激活,最终输出信号传递给下一层。
BP神经网络的训练过程包括正向传播和反向传播两个阶段。正向传播是指将输入信号逐层传递到输出层,并计算输出层的误差。反向传播是指将误差信号逐层反向传播,并调整网络权重和阈值,以减小误差。
3. 基于BP神经网络的退化灰色图像复原算法
基于BP神经网络的退化灰色图像复原算法流程如下:
-
构建BP神经网络模型,输入层对应退化图像的像素值,输出层对应原始图像的像素值。
-
收集退化图像和原始图像样本数据,并进行预处理。
-
对BP神经网络进行训练,调整网络权重和阈值,以减小输出层的误差。
-
利用训练好的BP神经网络对退化图像进行复原,得到复原后的图像。
4. 实验结果与分析
为了验证算法的有效性,我们对退化灰色图像进行了复原实验。实验结果表明,基于BP神经网络的退化灰色图像复原算法可以有效地恢复退化图像的细节信息,提高图像质量。
⛳️ 运行结果
🔗 参考文献
[1]赵瑞.运动模糊车牌识别系统的设计与实现[D].青岛科技大学,2016.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类