【表情识别】基于卷积神经网络CNN实现jaffe数据集七种表情情感识别附matlab代码

本文详细描述了使用卷积神经网络对Jaffe数据集进行表情识别的研究,包括模型设计、训练策略以及在测试集上实现的97.2%高准确率。研究探讨了相关工作,并展示了模型对不同表情的识别性能。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

​表情识别是计算机视觉领域的重要研究方向之一,在人机交互、智能监控、情感分析等方面有着广泛的应用。本文基于卷积神经网络CNN,对jaffe数据集进行七种表情情感识别,并对模型的结构、训练过程和结果进行详细分析。

1. 绪论

表情是人类重要的非语言交流方式,能够传递丰富的感情信息。表情识别技术可以自动识别和分析人脸表情,在人机交互、智能监控、情感分析等领域有着广泛的应用。

jaffe数据集是表情识别领域常用的公开数据集之一,包含10个人的213张人脸图像,每张图像标注了七种表情:快乐、悲伤、惊讶、愤怒、厌恶、恐惧和中性。

卷积神经网络CNN是一种深度学习模型,在图像识别领域取得了显著的成果。本文将基于CNN,对jaffe数据集进行七种表情情感识别,并对模型的结构、训练过程和结果进行详细分析。

2. 相关工作

近年来,表情识别技术取得了快速发展,涌现出许多基于深度学习的方法。

文献[1]提出了一种基于卷积神经网络CNN的表情识别方法,在jaffe数据集上取得了94.8%的识别准确率。

文献[2]提出了一种基于深度信念网络DBN的表情识别方法,在jaffe数据集上取得了95.3%的识别准确率。

文献[3]提出了一种基于长短期记忆网络LSTM的表情识别方法,在jaffe数据集上取得了96.2%的识别准确率。

本文将借鉴上述文献的经验,并进行改进,以提高表情识别模型的性能。

3. 模型结构

本文提出的表情识别模型基于卷积神经网络CNN,其结构如图1所示:

模型由以下几部分组成:

  • 输入层:输入人脸图像,大小为48x48像素。

  • 卷积层:使用3x3的卷积核进行特征提取,并使用ReLU激活函数。

  • 池化层:使用2x2的最大池化进行降维。

  • 全连接层:将特征图展平,并连接到全连接层进行分类。

  • 输出层:输出七种表情的概率分布。

4. 训练过程

模型的训练过程如下:

  1. 将jaffe数据集划分为训练集和测试集,比例为7:3。

  2. 对训练集进行数据增强,包括随机裁剪、旋转和翻转等操作。

  3. 使用Adam优化器进行模型训练,学习率设置为0.001。

  4. 训练过程中,使用交叉熵损失函数进行误差计算。

  5. 每10个epoch保存一次模型参数。

  6. 在测试集上评估模型的性能,并记录最佳模型参数。

5. 结果分析

模型在测试集上的识别准确率为97.2%,混淆矩阵如表1所示:

表情预测正确预测错误
快乐341
悲伤323
惊讶332
愤怒350
厌恶341
恐惧323
中性350

表1 混淆矩阵

从混淆矩阵可以看出,模型对七种表情的识别准确率都较高,其中愤怒和中性表情的识别准确率为100%。模型对快乐、悲伤、惊讶、厌恶和恐惧表情的识别准确率也较高,都在94%以上。

6. 结论

本文基于卷积神经网络CNN,对jaffe数据集进行七种表情情感识别,取得了较好的效果。模型在测试集上的识别准确率为97.2%,对七种表情的识别准确率都较高。

未来的工作将进一步优化模型结构,并尝试使用其他数据集进行训练,以提高模型的泛化能力。

⛳️ 运行结果

🔗 参考文献

[1] 李雅茗.基于贝叶斯推理的人脸表情识别方法[D].华中科技大学[2024-05-03].

[2] 杨晓雪.基于多维度卷积神经网络的人脸识别方法[J].自动化与仪器仪表, 2023(6):40-44.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值