✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 概述
数字信号调制是将数字信号转换为模拟信号进行传输的技术,广泛应用于现代通信系统中。4QAM(四相调幅)是一种常用的数字调制方式,它使用四个不同的幅度和相位组合来表示两个比特的数字信息。本文将深入探讨4QAM数字信号调制解调的误码率和星座图分析,以深入理解4QAM的性能和特性。
2. 4QAM调制原理
4QAM调制将两个比特的数字信息映射到四个不同的符号上,每个符号对应一个特定的幅度和相位。这四个符号在星座图上以正方形排列,相邻符号之间的距离相等。星座图可以直观地展现4QAM信号的调制特性。
4QAM调制可以使用多种方法实现,包括正交幅度调制(QAM)和差分相移键控(DPSK)。在正交幅度调制中,两个比特分别控制信号的I路和Q路幅度,而在差分相移键控中,两个比特控制信号的相位变化。
3. 误码率分析
误码率是衡量数字信号传输质量的重要指标,它表示传输过程中出现的错误比特数与总比特数的比率。对于4QAM信号,误码率主要受噪声和信道衰落的影响。
在高斯白噪声信道中,4QAM信号的误码率可以用以下公式计算:
4. 星座图分析
星座图是分析数字信号调制解调性能的常用工具。它将信号的I路和Q路幅度绘制在一个平面上,每个点对应一个调制符号。通过观察星座图,我们可以直观地判断信号的调制特性和误码率。
对于4QAM信号,星座图是一个正方形,四个符号均匀分布在正方形的四个顶点上。在理想情况下,接收到的信号星座图应该与理想星座图完全重合。然而,由于噪声和信道衰落的影响,接收到的信号星座图会发生偏移和变形。
通过观察星座图的偏移和变形程度,我们可以判断信号的误码率。例如,如果星座图的点发生较大的偏移,则表示误码率较高。
5. 结论
4QAM数字信号调制解调是一种常用的技术,它具有较高的频谱效率和抗噪声能力。通过误码率和星座图分析,我们可以深入理解4QAM信号的性能和特性,并优化其传输质量。
⛳️ 运行结果
🔗 参考文献
[1]夏文娟.基于高阶QAM的载波恢复方法的研究与实现[D].合肥工业大学[2024-05-10].DOI:CNKI:CDMD:2.1013.377705.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类