✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
移频键控 (FSK) 是一种常见的数字调制技术,它通过改变载波频率来表示不同的数字信息。传统的 FSK 系统通常采用单滤波器结构,但这种结构存在一些局限性,例如:
-
滤波器带宽较大,导致频谱利用率低。
-
滤波器对载波频率的变化敏感,容易受到干扰。
为了克服这些局限性,近年来出现了基于双滤波器的 FSK 通信系统。这种系统采用两个滤波器,分别用于接收高频和低频信号。与单滤波器系统相比,双滤波器系统具有以下优点:
-
频谱利用率更高,因为两个滤波器可以同时接收高频和低频信号。
-
对载波频率的变化更不敏感,因为两个滤波器可以分别对高频和低频信号进行滤波,从而降低干扰的影响。
双滤波器 FSK 通信系统的基本原理如下:
-
发射端:将数字信息转换为高频和低频信号,并分别通过两个滤波器进行滤波。
-
传输信道:高频和低频信号通过传输信道传输。
-
接收端:接收高频和低频信号,并分别通过两个滤波器进行滤波。
-
解调:根据高频和低频信号的幅度差,解调出数字信息。
双滤波器 FSK 通信系统可以应用于各种场景,例如:
-
无线通信:例如,蜂窝网络、无线局域网等。
-
卫星通信:例如,卫星电视、卫星导航等。
-
数据传输:例如,数据传输网络、工业控制系统等。
双滤波器 FSK 通信系统是一种高效、可靠的数字调制技术,它可以提高频谱利用率,降低干扰的影响,并提高通信系统的性能。
以下是一些关于双滤波器 FSK 通信系统的研究方向:
-
研究新的滤波器设计方法,以提高滤波器的性能和降低滤波器的复杂度。
-
研究新的解调算法,以提高解调的精度和速度。
-
研究新的编码方法,以提高通信系统的可靠性和安全性。
-
研究新的应用场景,以扩展双滤波器 FSK 通信系统的应用范围。
双滤波器 FSK 通信系统是一种很有前景的数字调制技术,它将继续在各种通信领域发挥重要作用。
仿真2Q-FSK信号调制解调 系统采用两个频率不同,起始相位一致的正弦波信号作为载波。对用户码元判断为正时,使用频率较高的载波;反之则使用频率较低的载波。调制后混合调制结果,然后发射出去。模拟经过高斯信道,人为加入高斯噪声,然后接收。 接收后,把信号分别进行带通数字滤波,两个滤波器的通带频率不一样。滤波后,对结果进行幅度比较,即可码元判决出用户发送的码元。
⛳️ 运行结果
🔗 参考文献
[1] 刘佐.基于双匹配滤波跳扩频通信系统伪码捕获技术研究及仿真[D].电子科技大学[2024-05-14].DOI:CNKI:CDMD:2.1013.329362.
[2] 杜玉华.基于信息理论通信系统的MATLAB仿真[J].考试周刊, 2008(45):2.DOI:CNKI:SUN:KDZK.0.2008-45-105.
[3] 赵静,张瑾,高新科.基于MATLAB的通信系统仿真[M].北京航空航天大学出版社,2007.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类