✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
双基地雷达系统因其独特的几何结构和优势,在目标探测、跟踪和成像等领域得到广泛应用。双基地雷达系统中,发射机和接收机分别位于不同的位置,这使得其具备了单基地雷达无法比拟的优势,例如:
-
**更强的抗干扰能力:**双基地雷达发射和接收信号的路径不同,因此可以有效降低来自目标附近干扰源的影响。
-
**更广阔的覆盖范围:**双基地雷达可以探测到单基地雷达无法探测到的目标,尤其是在低仰角和盲区区域。
-
**更强的目标识别能力:**双基地雷达可以利用发射和接收信号之间的差异来识别目标,例如目标的形状和材料。
本文将针对双基地雷达系统中发射线性调频脉冲信号,且目标为单目标的情况,进行距离多普勒分析。
1. 双基地雷达几何模型
如图1所示,双基地雷达系统中,发射机和接收机分别位于点 T 和 R,目标位于点 O。发射机发射的信号经目标反射后到达接收机。
2. 线性调频脉冲信号
线性调频脉冲信号(LFM)是一种常用的雷达信号,其频率随时间线性变化。其数学表达式如下:
3. 距离多普勒分析
发射信号经目标反射后,到达接收机的信号可以表示为:
4. 信号处理
接收信号经过匹配滤波器后,可以得到距离-多普勒谱。匹配滤波器的冲激响应为发射信号的复共轭:
5. 总结
本文详细阐述了双基地雷达系统中发射线性调频脉冲信号,且目标为单目标时的距离多普勒分析方法。通过对信号的传播时间和多普勒频移进行分析,可以确定目标的距离和速度信息。该方法在雷达目标探测、跟踪和成像等领域有着广泛的应用。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类