✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
信号去噪是信号处理领域中的一个重要研究课题,其目的是去除信号中的噪声,恢复原始信号的真实信息。小波变换作为一种强大的信号处理工具,因其良好的时频局部化特性,在信号去噪方面有着广泛的应用。本文将重点介绍一种基于软阈值、硬阈值以及改进的阈值小波变换的数字信号去噪方法,并使用信号噪声比(SNR)和均方根误差(RMSE)作为评价指标,对该方法的有效性进行评估。
1. 阈值小波变换
小波变换是一种将信号分解成不同尺度和频率成分的变换方法。在小波去噪中,阈值法是常用的方法之一。阈值法通过设定一个阈值,将小波系数中绝对值小于阈值的系数置零,而保留绝对值大于阈值的系数。阈值的选择直接影响着去噪的效果,因此需要根据信号的特点和噪声类型进行合理的设定。
2. 软阈值、硬阈值和改进的阈值
软阈值和硬阈值是两种常用的阈值函数。
-
软阈值函数:对小于阈值的系数进行线性压缩,使其逐渐接近零,保留了信号的大部分信息,但会引入一些偏差。
-
硬阈值函数:直接将小于阈值的系数置零,保留了信号的尖锐特征,但会造成信号细节的损失。
改进的阈值函数可以结合软阈值和硬阈值的优点,例如:
-
混合阈值函数:在不同尺度上使用不同的阈值函数,例如在低频部分使用软阈值,在高频部分使用硬阈值。
-
自适应阈值函数:根据信号的局部特征自适应地选择阈值,例如根据小波系数的分布情况选择阈值。
3. 基于改进的阈值小波变换的数字信号去噪方法
本方法采用改进的阈值小波变换,将软阈值、硬阈值和自适应阈值函数结合起来,实现数字信号的去噪。具体步骤如下:
-
选择小波基函数:根据信号的特点选择合适的小波基函数,例如db4、sym8等。
-
分解信号:对信号进行多级小波分解,得到不同尺度上的小波系数。
-
自适应阈值选择:根据小波系数的分布情况选择自适应阈值函数,例如使用软阈值、硬阈值或混合阈值函数。
-
阈值处理:对不同尺度上的小波系数进行阈值处理,将小于阈值的系数置零,保留大于阈值的系数。
-
重构信号:对处理后的系数进行小波重构,得到去噪后的信号。
4. 实验结果和分析
为了评估该方法的有效性,本文进行了模拟实验,使用不同噪声水平的信号进行去噪,并计算去噪后的信号的SNR和RMSE。实验结果表明,该方法能够有效地去除信号中的噪声,提高信号的SNR和降低RMSE,并且比传统的软阈值和硬阈值方法有更好的性能。
5. 结论
本文介绍了一种基于改进的阈值小波变换的数字信号去噪方法,该方法结合了软阈值、硬阈值和自适应阈值函数的优点,能够有效地去除信号中的噪声,提高信号的SNR和降低RMSE。该方法在数字信号处理、图像处理和语音处理等领域有着广泛的应用前景。
⛳️ 运行结果
🔗 参考文献
[1] 姚建红,张海鸥,张守宇,等.改进小波阈值算法在电能质量去噪中的应用[J].自动化与仪器仪表, 2016(2):3.DOI:10.14016/j.cnki.1001-9227.2016.02.057.
[2] 罗斯特,李增勇,张明,等.基于小波变换的体内外酒精含量近红外光谱检测与分析[J].光谱学与光谱分析, 2012, 32(6):6.DOI:10.3964/j.issn.1000-0593(2012)06-1541-06.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类