✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
近年来,随着人工智能技术的不断发展,群智能优化算法在解决复杂优化问题方面展现出巨大潜力。本文提出了一种增强型白骨顶鸡优化算法(Enhanced White-headed Vulture Optimization Algorithm, EWHVOA),并将其与其他七种流行的群智能算法(包括人工蜂群算法(COA)、粒子群优化算法(PSO)、鲸鱼优化算法(WOA)、蝙蝠算法(BOA)、蚁群优化算法(AEO)、哈里斯鹰优化算法(HHO)、变异狼群优化算法(AVOA))进行了比较。通过在十个标准测试函数上的实验,评估了各算法的性能。结果表明,EWHVOA在解决复杂优化问题方面表现出显著的优势,能够有效地找到全局最优解。
关键词:增强型白骨顶鸡优化算法,群智能算法,比较研究,优化问题
一、引言
群智能算法是一种受到自然界生物群体的行为启发的优化算法,通过模拟生物群体之间的协作和竞争,寻求解决复杂优化问题的最优解。近年来,群智能算法被广泛应用于各个领域,例如工程设计、机器学习、数据挖掘等。
白骨顶鸡是一种在非洲和亚洲地区常见的鸟类,其独特的觅食行为为优化算法的设计提供了灵感。白骨顶鸡通常会通过集体合作,将猎物逼到一个较小的区域,然后进行捕食。受此启发,白骨顶鸡优化算法(WHVOA)被提出,并展现出良好的优化性能。
然而,传统的WHVOA算法存在一些不足,例如容易陷入局部最优,收敛速度慢等问题。为了解决这些问题,本文提出了一种增强型白骨顶鸡优化算法(EWHVOA),通过引入新的搜索策略和参数调整机制,有效提升了算法的性能。
二、增强型白骨顶鸡优化算法
2.1 算法原理
EWHVOA算法借鉴了白骨顶鸡的觅食行为,将种群个体模拟成白骨顶鸡,通过对个体位置进行迭代更新,逐步逼近问题的最优解。算法主要包括两个阶段:搜索阶段和包围阶段。
-
搜索阶段: 该阶段模拟白骨顶鸡在广阔区域内搜索猎物,每个个体根据其当前位置和目标位置进行随机移动。
-
包围阶段: 该阶段模拟白骨顶鸡将猎物包围,每个个体通过调整自身位置,逐渐逼近最优解。
2.2 算法改进
为了提升WHVOA算法的性能,EWHVOA算法做了以下改进:
-
引入自适应步长: 自适应步长能够随着迭代次数的增加而逐渐减小,避免算法陷入局部最优。
-
增加随机扰动: 随机扰动能够有效避免算法陷入局部最优,提高算法的全局搜索能力。
-
引入交叉操作: 交叉操作可以将不同个体的优势特征结合起来,提高种群的多样性,避免早熟收敛。
三、其他七种群智能算法
本文将EWHVOA算法与以下七种群智能算法进行了比较:
-
人工蜂群算法 (COA): 模拟蜜蜂觅食行为,通过多个蜜蜂个体的协作,寻找最佳花蜜来源。
-
粒子群优化算法 (PSO): 模拟鸟群的觅食行为,每个粒子通过跟踪自身最佳位置和种群最佳位置进行更新。
-
鲸鱼优化算法 (WOA): 模拟座头鲸捕食猎物的行为,通过螺旋形搜索和包围猎物策略寻找最优解。
-
蝙蝠算法 (BOA): 模拟蝙蝠的回声定位行为,通过调整发射声波的频率和脉冲速率来寻找最优解。
-
蚁群优化算法 (AEO): 模拟蚂蚁觅食行为,通过在路径上留下信息素,引导其他蚂蚁找到最佳路径。
-
哈里斯鹰优化算法 (HHO): 模拟哈里斯鹰捕食猎物的行为,通过多种攻击策略来寻找最优解。
-
变异狼群优化算法 (AVOA): 模拟狼群狩猎行为,通过社会分层和合作狩猎策略寻找最优解。
四、实验与结果
4.1 实验设置
本文选取了十个标准测试函数,并使用Matlab软件对各算法进行了实验。每个算法的运行次数为30次,以避免随机性的影响,并对实验结果进行统计分析。
4.2 结果分析
实验结果表明,EWHVOA算法在大多数测试函数上都取得了最佳性能,在收敛速度和全局最优解方面表现出色。与其他七种算法相比,EWHVOA算法在以下方面具有优势:
-
更快的收敛速度: EWHVOA算法能够更快地找到全局最优解,并收敛到一个稳定的区域。
-
更强的全局搜索能力: EWHVOA算法能够有效避免陷入局部最优,并探索更大的搜索空间。
-
更高的优化精度: EWHVOA算法能够找到更精确的全局最优解,并取得更好的优化结果。
五、结论
本文提出了一种增强型白骨顶鸡优化算法(EWHVOA),通过引入新的搜索策略和参数调整机制,有效提升了算法的性能。实验结果表明,EWHVOA算法在解决复杂优化问题方面表现出显著的优势,能够有效地找到全局最优解。未来研究将进一步完善EWHVOA算法,使其能够更好地解决实际工程问题。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类