✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
一、引言
稻叶病害是影响水稻产量和品质的重要因素之一,及时准确地识别稻叶病害对于病害防治和产量提升至关重要。传统的稻叶病害识别方法主要依赖人工经验,存在识别效率低、准确率不高、易受主观因素影响等问题。近年来,随着计算机视觉和机器学习技术的快速发展,利用图像处理和模式识别技术进行稻叶病害自动识别成为研究热点。
二、系统设计
本系统基于多特征融合支持向量机(SVM)算法,通过提取稻叶图像的多特征,构建病害识别模型,实现对稻叶病害的自动识别。系统设计包括以下几个步骤:
2.1 图像预处理
为了消除图像噪声和提高特征提取的精度,需要对稻叶图像进行预处理。预处理步骤主要包括:
-
图像去噪: 使用中值滤波或高斯滤波对图像进行去噪,去除图像中的随机噪声。
-
图像增强: 使用直方图均衡化或自适应增强算法提高图像对比度,增强病害特征的可辨识度。
-
图像分割: 使用阈值分割或边缘检测算法将稻叶区域与背景分离,提取感兴趣区域。
2.2 特征提取
提取有效的图像特征是识别病害的关键步骤,本系统采用多种特征融合的方式,提取图像的多方面信息,提高识别精度。常用的特征提取方法包括:
-
颜色特征: 利用病害区域与正常区域颜色差异,提取颜色直方图、颜色矩等特征。
-
纹理特征: 利用病害区域与正常区域纹理差异,提取灰度共生矩阵、局部二值模式(LBP)等特征。
-
形状特征: 利用病害区域与正常区域形状差异,提取面积、周长、圆形度等特征。
2.3 特征选择
提取的特征往往存在冗余和无关信息,需要进行特征选择,去除无关特征,提高模型效率和泛化能力。常用的特征选择方法包括:
-
卡方检验: 评估特征与标签之间的相关性,选择与标签相关性高的特征。
-
互信息: 衡量特征之间相互依赖程度,选择相互依赖程度低的特征。
-
主成分分析(PCA): 对特征进行降维,保留主要特征信息。
2.4 模型训练
将特征选择后的特征集输入到支持向量机(SVM)模型进行训练,得到病害识别模型。SVM是一种二分类算法,可以有效地进行非线性分类。
2.5 模型评估
使用测试集对训练好的模型进行评估,计算模型的准确率、召回率、F1值等指标,评估模型的性能。
本系统以计算机视觉、图像处理、特征融合以及模式识别技术为基础,结合稻叶病特征,设计出基于集成特征表示的稻叶病图像识别系统。主要研究内容包括:1) 稻叶病图像收集与预处理:采集稻叶稻瘟病、白叶枯病、胡麻斑病三种病害的图片,通过双边滤波消除图片噪声,通过基于颜色特征的病斑提取算法来提取稻叶病斑;2) 稻叶病数据库的建立:建立稻叶病图像库、稻叶病病斑库、稻叶病斑特征库以及稻叶病信息库;3) 稻叶病集成特征表示:提取稻叶病的颜色特征、形状特征以及纹理特征,利用多集典型相关分析进行特征融合得到集成特征;4) 稻叶病图像识别技术:采用SVM支持向量机进行稻叶病图像分类训练,得到识别模型;5) 系统的搭建:利用Matlab软件搭建整体系统。
⛳️ 运行结果
🔗 参考文献
[1] 刘铁根,李秀艳,王云新,等.基于SVM的多生物特征融合识别算法[J].纳米技术与精密工程, 2011, 9(1):4.DOI:10.3969/j.issn.1672-6030.2011.01.009.
[2] 张永玲,姜梦洲,俞佩仕,等.基于多特征融合和稀疏表示的农业害虫图像识别方法[J].中国农业科学, 2018, 51(11):10.DOI:10.3864/j.issn.0578-1752.2018.11.006.
[3] 杨涛,雷进,朱皓睿,等.基于图像特征融合的麦冬叶部病害识别[J].湖北农业科学, 2021, 60(7):5.DOI:10.14088/j.cnki.issn0439-8114.2021.07.027.
[4] 马玉琨,刘子琼,张文武,等.多特征融合的农作物病害图像识别[J].河南科技学院学报:自然科学版, 2021(4):45-50+57.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类