【故障诊断】基于鲸鱼优化算法WOA优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

 ​✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

轴承作为机械设备中至关重要的部件,其运行状态直接影响着整个系统的安全性和可靠性。及时准确地诊断轴承故障对于防止设备事故、延长设备寿命、降低维护成本具有重大意义。近年来,深度学习技术在轴承故障诊断领域展现出强大的潜力,其中双向时间卷积神经网络(BiTCN)凭借其对时间序列数据的双向学习能力,在轴承故障诊断方面取得了显著成果。然而,BiTCN模型的性能受其超参数的影响较大,而传统的参数优化方法往往存在收敛速度慢、易陷入局部最优等问题。针对此问题,本文提出了一种基于鲸鱼优化算法(WOA)的BiTCN轴承故障诊断方法。该方法利用WOA算法对BiTCN模型的超参数进行优化,从而提高模型的准确性和泛化能力。实验结果表明,与传统优化方法相比,基于WOA的BiTCN方法在轴承故障诊断任务中取得了更好的性能,展现了其在实际应用中的可行性和有效性。

关键词:轴承故障诊断;双向时间卷积神经网络;鲸鱼优化算法;Matlab

1. 概述

轴承作为机械设备的核心部件,其故障会导致设备性能下降,甚至引发严重的安全事故。因此,及时准确地诊断轴承故障对于保障设备安全、提高生产效率至关重要。传统的轴承故障诊断方法主要依赖人工经验和特征工程,存在主观性强、识别效率低等问题。近年来,随着深度学习技术的快速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点。

双向时间卷积神经网络(BiTCN)是一种基于卷积神经网络的深度学习模型,它能够同时捕捉时间序列数据中的过去和未来信息,从而更好地识别故障特征。BiTCN在轴承故障诊断方面表现出良好的性能,但其超参数的设置对模型性能影响较大,而传统的参数优化方法存在收敛速度慢、易陷入局部最优等问题。

为了解决上述问题,本文提出了一种基于鲸鱼优化算法(WOA)的BiTCN轴承故障诊断方法。WOA算法是一种新型的元启发式优化算法,具有搜索效率高、全局寻优能力强等优点。该方法利用WOA算法对BiTCN模型的超参数进行优化,从而提升模型的准确性和泛化能力。

2. 方法介绍

2.1 双向时间卷积神经网络(BiTCN)

BiTCN是一种结合了双向循环神经网络和卷积神经网络优点的深度学习模型。其核心思想是利用两个方向的卷积核对时间序列数据进行卷积操作,分别提取过去和未来信息,然后将两个方向的信息进行融合,从而实现对时间序列数据的双向学习。

BiTCN模型主要由以下几部分组成:

  • 输入层:接收时间序列数据,并将其转换为模型可处理的格式。

  • 双向卷积层:对输入数据进行双向卷积操作,分别提取过去和未来信息。

  • 池化层:对卷积层的输出进行降维操作,减少模型参数量。

  • 全连接层:将池化层的输出映射到输出空间,进行分类或回归预测。

  • 输出层:输出模型的预测结果。

2.2 鲸鱼优化算法(WOA)

WOA算法是一种模拟鲸鱼捕食行为的元启发式优化算法。其核心思想是通过模拟鲸鱼的包围、攻击和搜索行为来搜索最优解。

WOA算法的主要步骤如下:

  1. 初始化鲸鱼种群,随机生成一组解向量。

  2. 计算每个解向量的适应度值。

  3. 更新鲸鱼种群的位置,模拟鲸鱼的包围、攻击和搜索行为。

  4. 循环步骤2-3,直到满足终止条件。

2.3 基于WOA优化的BiTCN模型

本文提出的基于WOA优化的BiTCN模型主要分为以下步骤:

  1. 数据预处理: 对收集的轴承振动信号进行预处理,包括去除噪声、数据归一化等操作。

  2. 特征提取: 将预处理后的信号作为BiTCN模型的输入,并利用BiTCN模型提取轴承故障特征。

  3. WOA参数优化: 利用WOA算法对BiTCN模型的超参数进行优化,例如卷积核大小、卷积层数量、学习率等。

  4. 模型训练和评估: 利用优化后的BiTCN模型对训练数据进行训练,并使用测试数据评估模型的性能。

3. 实验结果与分析

为了验证本文提出的基于WOA的BiTCN轴承故障诊断方法的有效性,进行了仿真实验。实验数据来自公开的轴承数据集,包含正常状态和不同故障状态下的轴承振动信号。实验结果表明,与传统的参数优化方法相比,基于WOA的BiTCN方法在轴承故障诊断任务中取得了更好的性能,具体表现为:

  • 识别准确率更高:基于WOA的BiTCN方法能够更准确地识别轴承故障,其识别准确率明显高于传统的参数优化方法。

  • 泛化能力更强:基于WOA的BiTCN方法对未知数据的识别性能更好,其泛化能力更强。

  • 收敛速度更快:WOA算法能够快速收敛到最优解,其优化效率明显高于传统的参数优化方法。

4. Matlab代码

以下是基于WOA优化的BiTCN轴承故障诊断方法的Matlab代码示例:

 

% 数据加载和预处理
data = load('bearing_data.mat');
% ... 数据预处理 ...

% BiTCN模型定义
% ... BiTCN模型定义 ...

% WOA参数设置
% ... WOA参数设置 ...

% WOA优化BiTCN模型
% ... WOA优化BiTCN模型 ...

% 模型训练和评估
% ... 模型训练和评估 ...

% 结果展示
% ... 结果展示 ...

5. 结论

本文提出了一种基于WOA的BiTCN轴承故障诊断方法,该方法利用WOA算法对BiTCN模型的超参数进行优化,从而提高了模型的准确性和泛化能力。实验结果表明,该方法在轴承故障诊断任务中取得了显著效果,展现了其在实际应用中的可行性和有效性。

📣 部分代码

%%  数据分析num_size = 0.7;                              % 训练集占数据集比例 outdim = 1;                                  % 最后一列为输出num_class = length(unique(res(:,end)));  % 计算类别数 num_samples = size(res, 1);                  % 样本个数kim = size(res, 2)-1;                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

⛳️ 运行结果

🔗 参考文献

[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.

[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.

[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.

[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.

[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 11
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
WOA-BP鲸鱼算法优化BP神经网络是一种常见的神经网络优化方法。下面是一些基本概念和实现步骤: 1. WOA-BP鲸鱼算法简介 WOA-BP鲸鱼算法是一种基于鲸鱼群智能优化算法和BP神经网络的优化方法。其基本思想是通过模拟鲸鱼的迁徙和捕食行为来寻找最优解。 2. BP神经网络简介 BP神经网络是一种常见的人工神经网络模型,其基本思想是通过反向传播算法来训练神经网络,从而实现对输入输出之间的映射关系进行学习和建模。 3. WOA-BP鲸鱼算法优化BP神经网络步骤 (1) 初始化BP神经网络参数和WOA算法参数; (2) 根据当前种群位置计算适应度函数值; (3) 利用WOA算法更新种群位置; (4) 根据更新后的位置计算新的适应度函数值,并根据新的适应度函数值对种群进行排序; (5) 判断是否满足停止条件,如果满足,则输出最优解,否则返回步骤2。 4. Matlab代码实现 以下是Matlab代码实现的基本框架: ``` % Step 1: 初始化BP神经网络参数和WOA算法参数 % Step 2: 根据当前种群位置计算适应度函数值 % Step 3: 利用WOA算法更新种群位置 % Step 4: 根据更新后的位置计算新的适应度函数值,并根据新的适应度函数值对种群进行排序 % Step 5: 判断是否满足停止条件,如果满足,则输出最优解,否则返回步骤2 % 以下是一个简单的示例代码: % Step 1: 初始化BP神经网络参数和WOA算法参数 pop_size = 10; % 种群大小 max_iter = 100; % 最大迭代次数 dim = 10; % 每个个体的维度 c1 = 2; % 常数c1 c2 = 2; % 常数c2 c3 = 2; % 常数c3 a = 2; % 常数a x_max = 100; % 变量x的上限 x_min = -100; % 变量x的下限 w_max = 1; % 权重w的上限 w_min = -1; % 权重w的下限 pop_position = rand(pop_size,dim); % 随机初始化种群位置 pop_fitness = zeros(1,pop_size); % 初始化种群适应度函数值 % Step 2: 根据当前种群位置计算适应度函数值 for i=1:pop_size pop_fitness(i) = fitness_func(pop_position(i,:)); % 计算适应度函数值 end % Step 3: 利用WOA算法更新种群位置 for t=1:max_iter % 迭代次数循环 for i=1:pop_size % 种群个体循环 r1 = rand(); r2 = rand(); A = 2*a*r1-a; C = 2*r2; b = 1; l = (a-1)*rand()+1; p = rand(); % 随机生成参数p if p<0.5 % 更新个体位置 for j=1:dim if rand()<0.5 D = abs(C*pop_position(i,j)-pop_position(i,j)); pop_position(i,j) = D*exp(b*l)*cos(2*pi*l)+pop_position(i,j); else D = abs(C*pop_position(i,j)-pop_position(i,j)); pop_position(i,j) = D*exp(b*l)*sin(2*pi*l)+pop_position(i,j); end if pop_position(i,j)>x_max % 边界处理 pop_position(i,j) = x_max; elseif pop_position(i,j)<x_min pop_position(i,j) = x_min; end end else % 更新种群位置 for j=1:dim % 根据WOA-BP算法来更新种群中所有个体的位置,并求出每个个体的适应度函数值 r3 = rand(); D = abs(pop_position(i,j)-pop_position(r3,j)); pop_position(i,j) = D*cos(c1*2*pi)*pop_position(r3,j)+D*cos(c2*2*pi)*pop_position(best_index,j)+D*cos(c3*2*pi)*rand(); if pop_position(i,j)>x_max % 边界处理 pop_position(i,j) = x_max; elseif pop_position(i,j)<x_min pop_position(i,j) = x_min; end end for j=1:dim % 根据新位置计算适应度函数值并更新最优解个体序号best_index fitness_val_new = fitness_func(pop_position(i,:)); if fitness_val_new<pop_fitness(i) pop_fitness(i) = fitness_val_new; best_index=i; end if fitness_val_new<pop_fitness(best_index) best_index=i; end end end end end % Step 4: 根据更新后的位置计算新的适应度函数值,并根据新的适应度函数值对种群进行排序 for i=1:pop_size % 根据新位置计算适应度函数值并更新最优解个体序号best_index fitness_val_new = fitness_func(pop_position(i,:)); if fitness_val_new<pop_fitness(i) pop_fitness(i) = fitness_val_new; best_index=i; end if fitness_val_new<pop_fitness(best_index) best_index=i; end end [sorted_fit, sorted_index] = sort(pop_fitness); % 排序 % Step 5: 判断是否满足停止条件,如果满足,则输出最优解,否则返回步骤2 if sorted_fit(1)<min_fitness_val % 达到最小误差则停止迭代,输出最优解 best_solution = pop_position(sorted_index(1),:); fprintf('The best solution is:\n'); disp(best_solution); else % 没有达到最小误差,则继续迭代下去 continue; end % 定义适应度函数fitness_func,根据当前权重计算误差值并返回fitness_val function fitness_val=fitness_func(weights) ... (根据权重weights计算误差并返回fitness_val) end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值