【故障诊断】基于淘金优化算法GRO优化双向时间卷积神经网络BiTCN实现轴承数据故障诊断附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要:随着工业自动化程度的不断提高,设备的可靠性愈加重要。轴承作为机械设备的核心部件,其故障会导致设备停机甚至安全事故。为了及时准确地诊断轴承故障,本文提出一种基于淘金优化算法GRO优化双向时间卷积神经网络BiTCN的故障诊断方法。该方法通过GRO算法优化BiTCN模型的参数,以提升模型的泛化能力和预测精度。实验结果表明,与传统方法相比,该方法具有更高的故障诊断准确率和鲁棒性,可有效应用于轴承故障诊断领域。

关键词:轴承故障诊断;双向时间卷积神经网络;淘金优化算法;GRO算法

1. 引言

轴承是机械设备中不可或缺的关键部件,其运行状态直接影响设备的正常运作和使用寿命。随着设备运行时间的增长,轴承会不可避免地出现磨损、疲劳等故障,导致设备性能下降,甚至出现安全事故。因此,及时准确地诊断轴承故障对保障设备安全运行和提高生产效率至关重要。

传统的轴承故障诊断方法主要依赖于人工经验和专家知识,存在诊断效率低、主观性强等缺点。近年来,随着机器学习和深度学习技术的快速发展,基于数据驱动的轴承故障诊断方法逐渐成为研究热点。其中,深度学习方法由于其强大的特征提取能力和非线性建模能力,在轴承故障诊断领域展现出巨大的潜力。

时间卷积神经网络(TCN)作为一种特殊的卷积神经网络,能够有效地提取时间序列数据的特征,在故障诊断领域得到了广泛应用。然而,传统的TCN模型只能捕捉单向时间信息,无法有效地利用双向时间信息,限制了模型的性能。双向时间卷积神经网络(BiTCN)通过引入双向时间卷积层,能够同时捕捉过去和未来的时间信息,从而提升模型的特征提取能力和诊断精度。

另一方面,模型参数优化是影响深度学习模型性能的关键因素。传统的手动参数调优方法耗时耗力,且效果不佳。近年来,一些智能优化算法,例如遗传算法、粒子群算法等,被用于深度学习模型的参数优化,取得了较好的效果。淘金优化算法(GRO)作为一种新兴的智能优化算法,具有收敛速度快、全局搜索能力强等优点,在优化深度学习模型参数方面具有较大潜力。

本文结合BiTCN模型和GRO算法,提出了一种基于GRO优化BiTCN的轴承故障诊断方法。该方法通过GRO算法对BiTCN模型的参数进行优化,提升模型的泛化能力和预测精度。实验结果表明,该方法具有更高的故障诊断准确率和鲁棒性,可有效应用于轴承故障诊断领域。

2. 相关工作

近年来,基于深度学习的轴承故障诊断方法取得了显著进展。一些研究采用卷积神经网络(CNN)提取轴承振动信号的特征,并进行故障分类,例如:

  • [文献1] 使用CNN对轴承振动信号进行特征提取,并结合支持向量机(SVM)进行故障分类,取得了较高的诊断精度。

  • [文献2] 提出了一种基于深度信念网络(DBN)的轴承故障诊断方法,该方法通过DBN学习振动信号的特征,并进行故障分类,展现出良好的诊断效果。

然而,CNN模型只能提取局部特征,无法有效地捕捉时间序列数据的全局特征。为了解决这个问题,一些研究人员采用时间卷积神经网络(TCN)进行轴承故障诊断,例如:

  • [文献3] 提出了一种基于TCN的轴承故障诊断方法,该方法利用TCN提取振动信号的时间特征,并进行故障分类,取得了比CNN更高的诊断精度。

  • [文献4] 结合TCN和长短时记忆网络(LSTM),提出了一种混合深度学习模型,该模型能够有效地捕捉振动信号的时间特征,并进行故障分类,展现出良好的诊断性能。

尽管TCN模型能够提取时间特征,但其单向结构无法有效地利用双向时间信息。双向时间卷积神经网络(BiTCN)通过引入双向时间卷积层,能够同时捕捉过去和未来的时间信息,从而提升模型的特征提取能力和诊断精度。一些研究将BiTCN应用于轴承故障诊断,例如:

  • [文献5] 提出了一种基于BiTCN的轴承故障诊断方法,该方法利用BiTCN提取振动信号的双向时间特征,并进行故障分类,取得了比TCN更高的诊断精度。

  • [文献6] 结合BiTCN和注意力机制,提出了一种基于注意力机制的BiTCN模型,该模型能够有效地识别振动信号中的关键特征,并进行故障分类,展现出良好的诊断性能。

然而,上述方法大多依赖于手动参数调优,存在效率低、效果不佳等缺点。为了解决这个问题,一些研究人员采用智能优化算法对深度学习模型参数进行优化,例如:

  • [文献7] 使用遗传算法优化CNN模型的参数,提升了模型的故障诊断精度。

  • [文献8] 利用粒子群算法优化LSTM模型的参数,提高了模型的预测性能。

3. 基于GRO优化BiTCN的轴承故障诊断方法

本节介绍基于GRO优化BiTCN的轴承故障诊断方法,该方法主要包含以下步骤:

3.1 数据预处理

首先,对采集到的轴承振动信号进行预处理,包括数据清洗、数据归一化等步骤。数据清洗主要去除噪声和异常数据,数据归一化将数据缩放到统一的范围内,以提高模型的训练效率和泛化能力。

3.2 特征提取

利用BiTCN模型提取轴承振动信号的特征。BiTCN模型通过双向时间卷积层提取信号的双向时间特征,并通过池化层降维,最终输出特征向量。

3.3 故障分类

将BiTCN模型提取的特征向量输入到分类器,例如支持向量机(SVM)或神经网络,进行故障分类。

3.4 GRO算法优化

为了提升BiTCN模型的性能,本文采用GRO算法对模型参数进行优化。GRO算法是一种基于群体的优化算法,通过模拟淘金者寻找金矿的过程,对模型参数进行优化。该算法具有收敛速度快、全局搜索能力强等优点,适用于优化深度学习模型参数。

3.5 诊断结果分析

根据模型的预测结果,对轴承故障进行诊断,并对诊断结果进行分析,以评估模型的性能。

4. 实验结果及分析

为了验证本文所提方法的有效性,在公开数据集上进行实验。数据集包含不同工况下采集的轴承振动信号,包括正常状态、内圈故障、外圈故障、滚动体故障等。

4.1 实验设置

本实验采用以下实验设置:

  • BiTCN模型:包含两个双向时间卷积层、两个池化层和一个全连接层。

  • GRO算法:种群规模为50,最大迭代次数为100。

  • 分类器:使用SVM进行故障分类。

  • 评估指标:使用准确率、召回率和F1分数评估模型性能。

4.3 分析

从实验结果可以看出,与传统的TCN模型相比,BiTCN模型能够提取更丰富的特征,提高了故障诊断精度。GRO算法对BiTCN模型参数进行优化后,进一步提升了模型性能,达到了最高的诊断精度。

5. 结论

本文提出了一种基于GRO优化BiTCN的轴承故障诊断方法,该方法通过GRO算法优化BiTCN模型的参数,提升了模型的泛化能力和预测精度。实验结果表明,该方法具有更高的故障诊断准确率和鲁棒性,可有效应用于轴承故障诊断领域。未来研究将进一步探索更有效的特征提取方法和优化算法,以进一步提升轴承故障诊断的精度和效率。

  • 📣 部分代码

%%  数据分析num_size = 0.7;                              % 训练集占数据集比例 outdim = 1;                                  % 最后一列为输出num_class = length(unique(res(:,end)));  % 计算类别数 num_samples = size(res, 1);                  % 样本个数kim = size(res, 2)-1;                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

⛳️ 运行结果

🔗 参考文献

[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.

[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.

[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.

[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.

[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
开普勒优化算法(Kepler Optimization Algorithm,KOA)是一种基于物理学的元启发式算法,由Mohamed Abdel-Basset等人于2023年提出。KOA受到开普勒行星运动定律的启发,可以预测行星在任何给定时间的位置和速度。在KOA中,每个行星及其位置都是一个候选解,它在优化过程中随机更新,相对于迄今为止最好的解(太阳)。 KOA通过模拟行星在空间中的运动来进行优化。它允许对搜索空间进行更有效的探索和利用,因为候选解(行星)在不同的时间表现出与太阳不同的情况。这种算法的目标是找到最优解,以解决各种优化问题。 除了开普勒优化算法,还有其他一些优化算法,如能量谷优化算法(EVO)[2]。每种算法都有其独特的特点和应用领域,可以根据具体问题的需求选择合适的优化算法。 总之,开普勒优化算法(KOA)是一种基于物理学的元启发式算法,受到开普勒行星运动定律的启发,用于解决各种优化问题。它通过模拟行星在空间中的运动来进行优化,并在搜索空间中寻找最优解。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [五种最新优化算法(SWO、ZOA、EVO、KOA、GRO)求解23个基准测试函数(含参考文献及MATLAB代码)](https://blog.csdn.net/weixin_46204734/article/details/131743115)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [智能优化算法-开普勒优化算法Kepler Optimization Algorithm(Matlab代码)](https://blog.csdn.net/weixin_44028734/article/details/131183877)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值