✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 人员疏散是公共安全领域的重要研究课题,在火灾、地震等突发事件发生时,有效的人员疏散策略能够最大程度地减少人员伤亡。本文以元胞自动机模型为基础,模拟公共场所人员疏散过程,并结合Matlab编程语言实现仿真实验。通过分析不同疏散策略对疏散时间和疏散效率的影响,为公共场所安全设计提供参考。
关键词: 元胞自动机,人员疏散,公共场所,Matlab
一、引言
公共场所人员疏散是保障公共安全的重要环节,其目标是在紧急情况下,将所有人员安全、迅速地疏散到安全区域。然而,由于人员密集、空间有限、信息不对称等因素,人员疏散过程往往存在着诸多挑战,例如:
-
人群拥挤: 人流集中容易造成拥堵,甚至引发踩踏事故。
-
路径选择: 人员缺乏对逃生路线的了解,可能会选择错误路线,造成疏散效率低下。
-
信息传递: 紧急情况下的信息传递可能受阻,导致人员无法及时获知疏散信息。
为了更好地理解人员疏散过程,提高公共场所安全设计水平,近年来,人们尝试使用计算机模拟技术来模拟人员疏散过程。其中,元胞自动机模型因其简单、易于实现、能够模拟复杂现象等优点,成为研究人员常用的工具。
二、元胞自动机模型
元胞自动机 (Cellular Automata, CA) 是一种离散数学模型,它由一系列规则控制的元胞组成。每个元胞都处于一个有限状态,并在每个时间步更新其状态,更新规则取决于自身状态和周围邻居的状态。
2.1 元胞自动机模型在人员疏散中的应用
在人员疏散模拟中,每个元胞代表一个单位面积内的行人,其状态表示行人的位置、移动方向和速度等。元胞自动机模型的规则则定义了行人在不同状态下的行为,例如:
-
行人移动规则: 行人按照一定的规则,选择移动方向和速度。
-
碰撞规则: 行人之间发生碰撞时,按照一定的规则调整移动方向和速度。
-
避障规则: 行人遇到障碍物时,按照一定的规则选择绕行路线。
2.2 元胞自动机模型的优势
-
简化复杂性: 元胞自动机模型将复杂的现实环境抽象为简单的规则,简化了问题。
-
易于实现: 该模型易于编程实现,可以方便地进行仿真实验。
-
并行计算: 元胞自动机模型适合并行计算,能够有效提高计算效率。
三、基于元胞自动机的公共场所人员疏散模拟
3.1 模拟环境
本文以一个矩形公共场所为例,将其划分成若干个元胞,每个元胞代表一个单位面积。在该公共场所内,设置若干个出口,以及一些障碍物,例如柱子、墙体等。
3.2 行人状态
每个行人以一个元胞表示,其状态包括:
-
位置: 行人当前所在的元胞坐标。
-
移动方向: 行人下一个时间步将要移动的方向。
-
移动速度: 行人每一步移动的距离。
-
目标: 行人的目标位置,即出口位置。
3.3 元胞自动机规则
-
行人移动规则: 行人按照最小距离原则选择移动方向,优先选择指向出口的方向。
-
碰撞规则: 行人之间发生碰撞时,按照随机规则选择新的移动方向。
-
避障规则: 行人遇到障碍物时,按照一定的规则选择绕行路线。
3.4 Matlab 代码实现
for t = 1:100
% 更新行人位置
for i = 1:nRows
for j = 1:nCols
if pedestrians(i, j) == 1
% 计算行人到各个出口的距离
distances = sqrt((exitPositions(:, 1) - i).^2 + (exitPositions(:, 2) - j).^2);
% 选择距离最小的出口
[~, exitIndex] = min(distances);
% 计算行人移动方向
direction = [exitPositions(exitIndex, 1) - i, exitPositions(exitIndex, 2) - j];
% 更新行人位置
newI = i + direction(1);
newJ = j + direction(2);
if newI > 0 && newI <= nRows && newJ > 0 && newJ <= nCols && environment(newI, newJ) ~= -1
pedestrians(newI, newJ) = 1;
pedestrians(i, j) = 0;
end
end
end
end
% 绘制模拟结果
imshow(environment + pedestrians);
drawnow;
end
四、结果分析
4.1 疏散时间
通过模拟,可以计算出不同疏散策略下的疏散时间,例如,可以比较不同出口数量、不同出口位置对疏散时间的影响。
4.2 疏散效率
疏散效率是指在一定时间内疏散的人数比例。可以通过分析不同疏散策略下,疏散人数与疏散时间的比值,来评估不同策略的疏散效率。
五、结论
本文以元胞自动机模型为基础,模拟了公共场所人员疏散过程,并利用Matlab代码实现了仿真实验。通过分析不同疏散策略下的模拟结果,可以得出一些结论,为公共场所安全设计提供参考。
六、未来研究方向
-
进一步优化元胞自动机模型,使其能够更加准确地模拟人员行为。
-
将其他因素,例如人员心理状态、信息传递等,纳入到模型中,使模拟结果更加符合实际情况。
-
将模拟结果应用于实际的公共场所设计中,指导安全疏散设施的建设。
⛳️ 运行结果
🔗 参考文献
[1] 郭良杰,赵云胜.基于元胞自动机模型的人员疏散行为模拟[J].安全与环境工程, 2014, 21(4):6.DOI:10.3969/j.issn.1671-1556.2014.04.020.
[2] 何叶荣,倪艳.基于元胞自动机的人群疏散出口设置研究[J].长春师范大学学报, 2023, 42(12):53-59.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类