✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
摘要
摘要应当为读者提供一个快速的文章概览,确保读者在短时间内了解文章的核心内容和重要结论。
方法:清晰地描述您使用的主要方法或技术。例如,您是否采用了深度学习、遗传算法、有限元分析等。问题解决:描述论文解决的主要问题或挑战。例如,“通过采用神经网络技术,本研究成功地预测了特定地区的气候变化。”主要结果:简洁地介绍您的主要发现或结论。例如,“通过PINN方法,模型预测的准确率提高了15%。”简练性:避免冗余和不必要的描述。每句话都应该传达重要的信息。准确性:确保摘要中的信息与正文内容完全一致,并确保没有误导性的描述。摘要部分是论文的“门面”,通常决定着读者是否继续深入阅读,因此必须引人注目、明确和有说服力。您的摘要应当精心撰写,确保其能够吸引目标读者。尤其注意摘要的长度,确保其内容丰富但又不超过一页。
关键词是读者和研究者检索文献时的主要工具,因此它们的选择至关重要。
反映文章内容:例如,如果您的文章主要是关于使用神经网络进行气象预测,那么“神经网络”和“气象预测”应当是关键词。涵盖方法和技术:描述您在研究中使用的主要技术和方法,如“PINN”或“微分方程”。独特性和特色:如果您的研究具有某些特定的特色或创新点,也可以考虑将其作为关键词。选择有代表性的词汇:关键词应当能够反映文章的核心内容和方法。避免过于宽泛的词汇:例如,“研究”或“方法”这样的词汇可能太过宽泛,不具有指导意义。限制关键词的数量:通常3-8个关键词为宜,确保每个关键词都有其存在的意义。总之,无论是摘要还是关键词,都需要反映文章的核心和特色。在撰写过程中,确保内容既简练又具有说服力,这样可以提高您论文的可读性和影响力。
关键词:神经网络;微分方程;PINN;气象预测。
一、问题重述
内容:重新陈述原始的数学建模问题,确保读者能够明确理解问题的内容和背景。
工作要点:
使用简单明了的语言,避免复杂的行文和术语。尽可能地为读者提供清晰的背景信息,使其了解问题的来源和重要性。注:避免直接复制原题,应根据问题的复杂度进行适当的拆分或精炼。当原始问题描述很短时,适当展开,提供必要的背景和解释。反之,如果原始问题描述很长或复杂,尝试精炼核心内容,使其更为简洁。
二、问题分析
内容:对问题进行深入的分析,强调问题的重要性、复杂性和需要考虑的关键因素。
工作要点:
着重分析问题的背景,为何该问题重要,以及与其相关的现实世界的挑战。对问题进行初步的定性分析,明确问题的核心难点和挑战。为后续的数学建模提供思路,预判可能需要用到的方法和技巧。三、假设合理性分析及说明内容:清晰地列出建模过程中所有做出的假设,并为每个假设提供合理性说明。
工作要点:
每个假设都要简单明了,避免模糊不清的描述。对于每个假设,都要提供合理的解释或证据支持,确保假设是建立在实际情境或已有知识的基础上的。注:
假设的制定应针对模型的关键部分,避免不必要或无关的假设。考虑小概率事件,如在气象模型中假设不考虑地震,因为地震发生的概率小,但对结果影响巨大。考虑难以计算或缺乏数据的因素,如在交通模型中假设每个驾驶员的驾驶习惯相同,虽然这在现实中并不准确,但为了简化模型,这是一个必要的假设。
四、符号约定
内容:列出模型中使用的所有数学符号,为每个符号提供清晰的定义。
工作要点:
保持每个符号的定义简单明了,避免模糊的描述。为复杂的符号或不常见的符号提供详细的解释。确保整篇文章中对每个符号的使用都与此处的定义一致,避免混淆。符号 定义 单位A f i e l d A_{field}A field
农田的面积 平方米V w a t e r V_{water}V water
单次灌溉所需的水量 立方米r r a i n r_{rain}r rain
雨水的降雨率 毫米/小时d r o o t d_{root}d root
作物的根部深度 厘米T i r r i g a t e T_{irrigate}T irrigate
灌溉间隔(即两次灌溉之间的时间) 天
五、模型的建立与求解
5.1 问题1
5.1.1 问题1的前期准备
在建模前的准备工作中,我们需要确保对问题有深入的理解并为模型建立作好全面的准备。以下是这部分通常需要做的内容:
问题分析:对问题进行深入探讨,明确问题的背景、目的和要求。根据问题描述,明确需要解决的主要问题和次要问题。数据收集与整理:根据问题的需要,搜集相关的历史数据、统计信息或实验数据。对数据进行初步处理,如去除异常值、数据标准化、数据归类等。理论知识和方法的复习:根据问题的特点,复习相关的数学理论和方法,如线性代数、微积分、统计学、优化理论等。熟悉可能使用到的数学工具或软件,如MATLAB、Python的NumPy库等。预先设想与策略:对可能使用的模型进行初步设想,如线性模型、动态系统模型、概率模型等。制定初步的建模策略和求解方法。
5.1.2 问题1的模型建立与求解
在这部分,我们需要详细描述模型的构建过程及如何求解该模型。以下是这部分通常需要做的内容:
建模:根据前期准备中的预设想和策略,明确选择的模型类型。基于已有数据和知识,明确模型中的变量、参数、约束等。表达模型的数学形式,如方程、不等式、目标函数等。模型简化与假设:根据实际情况,对模型进行必要的简化,如忽略某些复杂因素、假设某些参数为常数等。明确并列出所有的假设,并为每个假设提供合理性解释。模型求解:选择合适的方法对模型进行求解,如解析方法、数值方法、模拟方法等。使用相关工具或软件进行求解,并获得初步的结果。结果验证与分析:对求解结果进行验证,确保其与实际情况相符。根据结果,对问题给出相应的答案或建议。
六、模型的评价、改进与推广
6.1 模型的优缺点
6.1.1 模型的优点
明确性:列举模型在处理问题时所展现出的长处。对比:与其他常用方法进行对比,强调其相对的优势。广泛性:如果模型能够处理一系列相似的问题,这也是其一个优点。
6.1.2 模型的缺点
限制性:明确模型的局限性。复杂性:如果模型需要大量的计算资源或时间。精确性:如果模型在某些情况下的预测与实际结果存在偏差。
6.2 模型的改进
方法优化、增加复杂性、新技术引入等。
6.3 模型的改进推广
应用领域扩展、模型的普适性、实际应用案例等。
七、参考文献
确保每条参考都按照统一的格式列出。
卢吉生.PT泵燃油系统的组成及工作原理的研究[J].农民致富之友,2017(13):152.王贵新. 12V132柴油机燃油系统综合优化研究[D].哈尔滨工程大学,2006.
数学建模中比较常见的几种模型:
(一)、预测与预报
1、灰色预测模型(必须掌握)
满足两个条件可用:
①数据样本点个数少,6-15个
②数据呈现指数或曲线的形式
例如:可以通过极值点和稳定点来预测下一次稳定点和极值点出现的时间点
2、微分方程预测(高大上、备用)
无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系。微分方程关系较为复杂,如果数学功底不是很好的一般不会选择使用。比如说小编我。
3、回归分析预测(必须掌握)
求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化;
样本点的个数有要求:
①自变量之间的协方差比较小,最好趋近于0,自变量间的相关性小;
②样本点的个数n>3k+1,k为自变量的个数;
③因变量要符合正态分布
4、马尔科夫预测(备用)
一个序列之间没有信息的传递,前后没联系,数据与数据之间随机性强,相互不影响;今天的温度与昨天、后台没有直接联系,预测后天温度高、中、低的概率,只能得到概率
5、时间序列预测(必须掌握)
与马尔科夫链预测互补,至少有2个点需要信息的传递,AR模型、MA模型ARMA模型,周期模型,季节模型等
6、小波分析预测(高大上)
数据无规律,海量数据,将波进行分离,分离出周期数据、规律性数据;可以做时间序列做不出的数据,应用范围比较广
7、神经网络预测(备用)
大量的数据,不需要模型,只需要输入和输出,黑箱处理,建议作为检验的办法
8、混沌序列预测(高大上)
比较难掌握,数学功底要求高
(二)、评价与决策
1、模糊综合评判(经常用,需掌握)
评价一个对象优良中差等层次评价,评价一个学校等,不能排序
2、主成分分析(经常用,需掌握)
评价多个对象的水平并排序,指标间关联性很强
3、层次分析法(AHP)(经常用,需掌握)
做决策,去哪旅游,通过指标,综合考虑做决策
4、数据包络(DEA)分析法
优化问题,对各省发展状况进行评判
5、秩和比综合评价法(经常用,需掌握)
评价各个对象并排序,指标间关联性不强
6、优劣解距离法(TOPSIS法)
7、投影寻踪综合评价法
揉合多种算法,比如遗传算法、最优化理论等
8、方差分析、协方差分析等(经常用,需掌握)
方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产量有无影响,差异量的多少;(1992年,作物生长的施肥效果问题)
协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因素,但注意初始数据的量纲及初始情况。(2006年,艾滋病疗法的评价及预测问题)
(三)、分类与判别
1、距离聚类(系统聚类)(常用,需掌握)
2、关联性聚类(常用,需掌握)
3、层次聚类
4、密度聚类
5、其他聚类
6、贝叶斯判别(统计判别方法,需掌握)
7、费舍尔判别(训练的样本比较多,需掌握)
8、模糊识别(分好类的数据点比较少)
(四)、关联与因果
1、灰色关联分析方法(样本点的个数比较少)
2、Sperman或Kendall等级相关分析
3、Person相关(样本点的个数比较多)
4、Copula相关(比较难,金融数学,概率数学)
5、典型相关分析(因变量组Y1234,自变量组X1234,各自变量组相关性比较强,问哪一个因变量与哪一个自变量关系比较紧密?)
6、标准化回归分析
若干自变量,一个因变量,问哪一个自变量与因变量关系比较紧密
7、生存分析(事件史分析)难
数据里面有缺失的数据,哪些因素对因变量有影响
8、格兰杰因果检验
计量经济学,去年的x对今年的y有没有影响
(五)、优化与控制
1、现行规划、整数规划、0-1规划(有约束,确定的目标)
2、非线性规划与智能优化算法
3、多目标规划和目标规划(柔性约束,目标函数,超过)
4、动态规划
5、网络优化(多因素交错复杂)
6、排队论与计算机仿真
7、模糊规划(范围约束)
8、灰色规划(难)
◆涉及到的数学建模方法:
几何理论、现行代数、微积分、组合概率、统计(回归)分析、优化方法(规划)、图论与网络优化、综合评价、插值与拟合、差分计算、微分方程、排队论、模糊数学、随机决策、多目标决策、随机模拟、灰色系统理论、神经网络、时间序列、机理分析等方法。
⛳️ 运行结果
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类