✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、期刊写作与指导,代码获取、论文复现及科研仿真合作可私信或扫描文章底部二维码。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
倒立摆系统作为经典的非线性控制系统,因其自身的不稳定性和对控制算法的高要求,成为验证各种控制策略有效性的理想平台。本文将深入探讨基于强化学习的一级倒立摆控制问题,特别关注如何融合距离和角度信息,以提升控制器的鲁棒性和性能,并提供相应的Matlab代码实现。
一、问题描述与模型建立
一级倒立摆系统由一根垂直放置的杆子以及一个可以水平移动的小车构成。小车的水平位移和杆子的角度共同描述了系统的状态。控制目标是通过控制小车的水平加速度,使倒立摆保持直立平衡状态,无论初始状态如何。与仅考虑角度的简化模型不同,本文考虑了小车与平衡点的距离信息,这更贴近实际应用场景,也增加了控制的复杂度。
系统的状态空间可以表示为 x = [x, ẋ, θ, θ̇]
<sup>T</sup>,其中 x
表示小车位移,ẋ
表示小车速度,θ
表示杆子与垂直方向的夹角,θ̇
表示杆子角速度。控制输入 u
为小车的水平加速度。系统的动力学方程可以通过牛顿-欧拉法推导得出:
ẍ = u
θ̈ = (g*sin(θ) - cos(θ)*(u + l*θ̇²/cos(θ)))/(l*(4/3 - m*cos²(θ)/M))
其中,g
为重力加速度,l
为杆长,m
为杆质量,M
为小车质量。 该非线性模型体现了倒立摆系统固有的复杂性和挑战性。
二、强化学习方法的选择与设计
强化学习 (Reinforcement Learning, RL) 提供了一种有效的解决此类非线性控制问题的方法。本文选择Q-learning算法作为核心算法,因为它具有较好的收敛性和易于实现的特点。考虑到状态空间的连续性,我们将采用离散化的方法将连续状态空间转化为离散状态空间,以满足Q-learning算法的要求。
具体来说,我们将状态空间划分成若干个网格,每个网格代表一个离散状态。动作空间则为小车加速度的若干个离散值。Q-learning算法的核心在于更新Q值函数,该函数表示在特定状态下选择特定动作的价值。Q值函数的更新公式如下:
Q(s, a) = Q(s, a) + α[r + γ*max<sub>a'</sub>Q(s', a') - Q(s, a)]
其中,s
为当前状态,a
为当前动作,s'
为下一状态,r
为奖励,α
为学习率,γ
为折扣因子。
奖励函数的设计至关重要,它需要能够引导智能体学习到正确的控制策略。本文采用以下奖励函数:
r = -|x| - |θ| - |ẋ| - |θ̇|
该奖励函数对小车位移、角度、速度和角速度的绝对值进行惩罚,鼓励智能体使系统尽可能接近平衡点并保持稳定。
三、距离与角度信息的融合
为了有效地融合距离和角度信息,我们设计了状态空间的离散化方式。 简单的将 x
, θ
, ẋ
, θ̇
分别离散化会导致状态空间维度过高,从而增加计算量和收敛难度。因此,我们考虑采用一种更有效的策略:
-
状态归一化: 将
x
,θ
,ẋ
,θ̇
分别进行归一化处理,将它们映射到[ -1, 1]区间内,以便于进行离散化。 -
状态空间压缩: 通过分析,我们可以发现距离和角度信息对控制效果的影响程度有所不同,例如,较小的角度偏差可能比较大的距离偏差更容易被纠正。因此,我们可以根据其对系统稳定性的影响权重对状态变量进行加权平均,从而降低状态空间的维度。
-
自适应离散化: 根据学习过程中的经验,动态调整状态空间的离散化精度,在学习初期,可以采用较粗糙的离散化精度,提高学习效率;在学习后期,可以提高离散化精度,以获得更精确的控制效果。
四、Matlab代码实现
以下提供Matlab代码框架,用于实现基于Q-learning的一级倒立摆控制:
% 参数设置
g = 9.8; l = 1; m = 1; M = 10;
% 状态空间离散化
% ... (状态归一化和压缩代码) ...
% 动作空间离散化
% ... (动作空间离散化代码) ...
% Q值表初始化
Q = zeros(size(states), length(actions));
% 训练循环
for i = 1:episodes
% 状态初始化
% ...
while ~terminal_state
% 选择动作 (ε-greedy策略)
% ...
% 执行动作,获得奖励和下一状态
% ... (动力学方程模拟) ...
% 更新Q值
% ... (Q-learning更新公式) ...
end
end
% 测试
% ... (测试代码) ...
上述代码仅提供了框架,具体的实现细节,如状态空间离散化、动作选择策略、ε-greedy参数的调整等,需要根据实际情况进行设计和优化。
五、结论与展望
本文研究了基于强化学习的一级倒立摆控制问题,并提出了融合距离和角度信息的策略,通过合理的奖励函数设计和状态空间处理,提高了控制器的鲁棒性和性能。 Matlab代码框架为进一步的实验和改进提供了基础。未来的研究方向可以包括:探索更高级的强化学习算法,例如深度强化学习 (Deep Reinforcement Learning, DRL);进一步优化奖励函数和状态空间的处理方法;研究在具有噪声和扰动的环境下倒立摆的鲁棒控制。 通过持续的改进,可以开发出更高效、更鲁棒的倒立摆控制系统,并将其应用于更广泛的领域。
⛳️ 运行结果
🔗 参考文献
[1]张荣,陈卫东.基于强化学习的倒立摆起摆与平衡全过程控制[J].系统工程与电子技术, 2004, 26(1):6.DOI:10.3321/j.issn:1001-506X.2004.01.020.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类