【图像融合】基于加权平均+HIS+高通滤波+灰度调制的图像融合算法研究附Matlab代码

✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击主页 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

图像融合技术作为一种重要的图像处理方法,广泛应用于遥感、医学影像、军事侦察等诸多领域。其目标是将多源图像中的互补信息有效地结合起来,生成一幅信息量更大、质量更高的融合图像,以提高图像的清晰度、分辨率和信噪比。本文将深入研究一种基于加权平均、HIS变换、高通滤波和灰度调制的图像融合算法,并提供相应的Matlab代码实现。

一、 算法原理及步骤

该算法结合了多种图像融合方法的优点,通过多步骤处理,实现对不同图像信息的有效融合。其主要步骤如下:

1. 源图像预处理: 首先,对输入的两幅源图像进行预处理,包括图像格式转换、噪声去除等。此步骤确保后续处理的顺利进行,减少噪声对融合结果的影响。选择合适的预处理方法取决于图像的具体情况,例如,可以采用中值滤波器去除椒盐噪声,高斯滤波器去除高斯噪声。

2. HIS变换: 将两幅源图像从RGB颜色空间转换到HIS颜色空间。HIS颜色空间分别代表色调(Hue)、饱和度(Saturation)和亮度(Intensity)。这种变换的优势在于亮度信息与颜色信息分离,便于单独处理。在HIS空间中,亮度信息通常包含更多的细节和纹理信息,而色调和饱和度则反映了图像的颜色特征。

3. 高通滤波: 对两幅图像的亮度分量分别进行高通滤波处理。高通滤波器可以有效地提取图像的高频信息,例如边缘和细节。通过对亮度分量进行高通滤波,可以增强图像的细节和纹理,提高融合图像的清晰度。常用的高通滤波器包括拉普拉斯算子、Sobel算子等。滤波器的选择需要根据具体应用场景和图像特性进行调整。 在此步骤中,我们选择合适的滤波器参数,例如滤波器的核大小和截止频率,以平衡细节增强和噪声抑制。

4. 加权平均融合: 对高通滤波后的亮度分量进行加权平均融合。权重的选择至关重要,它决定了融合图像中各个图像的贡献程度。权重的确定方法有很多,例如根据图像的清晰度、对比度等指标进行加权。本文采用一种基于图像熵的加权方法,熵值较高的图像赋予较大的权重,从而优先保留信息量较大的部分。

数学表达式如下:
I_fused = w1 * I1 + w2 * I2

其中,I_fused表示融合后的亮度分量,I1和I2分别表示两幅图像的高通滤波后的亮度分量,w1和w2分别表示对应的权重,且w1 + w2 = 1。

5. 灰度调制: 将融合后的亮度分量与原始图像的色调和饱和度分量进行组合,最终生成融合图像。这种方法可以有效地保留原始图像的颜色信息,并利用融合后的亮度分量来提高图像的清晰度和对比度。

6. 逆HIS变换: 将融合后的HIS图像转换回RGB颜色空间,得到最终的融合图像。

二、 Matlab代码实现

以下为基于上述算法的Matlab代码实现:

entropy2 = entropy(img2_laplacian);
w1 = entropy1 / (entropy1 + entropy2);
w2 = entropy2 / (entropy1 + entropy2);

% 加权平均融合
fused_intensity = w1 * img1_laplacian + w2 * img2_laplacian;

% 灰度调制与逆HIS变换
fused_his(:,:,1) = img1_his(:,:,1); % 使用图像1的色调
fused_his(:,:,2) = img1_his(:,:,2); % 使用图像1的饱和度
fused_his(:,:,3) = fused_intensity;
fused_rgb = hsv2rgb(fused_his);

% 显示结果
figure;
subplot(2,2,1); imshow(img1); title('图像1');
subplot(2,2,2); imshow(img2); title('图像2');
subplot(2,2,3); imshow(fused_rgb); title('融合图像');

% 保存结果
imwrite(fused_rgb, 'fused_image.jpg'); 

三、 算法改进与未来研究方向

本文提出的算法虽然有效地实现了图像融合,但仍存在一些可以改进之处。例如,可以尝试更先进的加权方法,例如基于图像局部特征的加权方法;可以探索更有效的噪声去除方法;可以将深度学习技术引入到图像融合算法中,以提高融合效果。未来研究方向可以包括:针对特定应用场景进行算法优化;探索多幅图像融合算法;研究基于深度学习的图像融合算法等。

四、 结论

本文提出了一种基于加权平均、HIS变换、高通滤波和灰度调制的图像融合算法,并提供了相应的Matlab代码实现。该算法能够有效地融合多源图像信息,提高图像质量。然而,算法仍有改进空间,未来需要进一步研究更优的算法和技术,以满足不同应用场景的需求。 本算法的优劣之处也需要在实际应用中通过客观指标如PSNR和SSIM等进行评估和验证。 只有通过不断的改进和完善,才能使图像融合技术更好地服务于各个领域。

⛳️ 运行结果

🔗 参考文献

[1] 董侠.基于稀疏表示的脑部多模态图像融合方法研究[D].中北大学[2024-10-01].DOI:CNKI:CDMD:2.1018.183751.

[2] 张丽丽.基于多小波变换的遥感图像融合算法研究[J].大庆师范学院学报, 2009, 29(3):4.DOI:10.3969/j.issn.2095-0063.2009.03.006.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值