✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
尖峰神经网络 (Spiking Neural Networks, SNNs) 作为一种更贴近生物神经系统工作机制的神经网络模型,近年来受到越来越多的关注。不同于传统人工神经网络使用实值作为神经元状态,SNNs 使用脉冲序列 (spikes) 来编码信息,这使得其在能效和信息处理方面具有潜在的优势。然而,SNNs 的训练算法一直是制约其发展的重要瓶颈。本文将深入探讨基于脉冲时间依赖性可塑性 (Spike-Timing-Dependent Plasticity, STDP) 的 SNN 监督学习算法,分析其原理、优势、挑战以及未来的研究方向。
STDP 是一种生物启发的学习规则,它描述了突触权重根据前后两个神经元的脉冲时间差进行调整的机制。具体来说,如果后突触神经元在预突触神经元脉冲之后一段时间内发出脉冲,则突触权重将增强;反之,如果后突触神经元在预突触神经元脉冲之前或相差时间较长后发出脉冲,则突触权重将减弱。这种基于时间差的学习规则使得 SNNs 能够学习更精细的时间信息,这对于处理时间序列数据和模拟生物神经系统的动态行为至关重要。
基于 STDP 的 SNN 监督学习算法通常采用误差反向传播 (Backpropagation, BP) 的思想。然而,直接将 BP 应用于 SNNs 存在诸多挑战,因为 SNNs 的非线性、脉冲特性以及 STDP 学习规则的非平滑性使得误差的梯度计算变得复杂且不稳定。因此,基于 STDP 的 SNN 监督学习算法通常采用一些变通策略:
1. 基于代理梯度的算法: 这类算法通过构建一个代理梯度来近似 SNN 的真实梯度。例如,可以使用脉冲频率或神经元膜电位来代替脉冲序列,从而将 SNN 的问题转化为更易于处理的实值问题。然后,利用传统的 BP 算法进行训练。这种方法虽然简化了计算,但也损失了部分时间信息,降低了 SNN 的表达能力。
2. 直接基于 STDP 的算法: 这类算法试图直接利用 STDP 规则进行监督学习。这通常需要设计一些额外的机制来引导 STDP 学习过程,例如引入奖励信号或惩罚信号,以指导突触权重的调整方向。这种方法更加贴近生物神经系统的学习机制,但其学习效率和收敛性往往较差,需要更精细的参数调优和算法设计。
3. 混合算法: 这类算法结合了上述两种方法的优点,例如,可以利用代理梯度来进行预训练,然后再利用 STDP 进行微调,以提高学习效率和精度。
基于 STDP 的 SNN 监督学习算法面临着诸多挑战:
-
局部最小值: STDP 规则可能导致 SNN 陷入局部最小值,影响学习效果。
-
学习效率: 与传统人工神经网络相比,基于 STDP 的 SNN 训练速度通常较慢。
-
参数调优: STDP 规则中的参数(例如时间常数)对学习效果影响很大,需要进行精细的调优。
-
可解释性: 基于 STDP 的 SNN 的可解释性较差,难以理解其学习过程和结果。
尽管存在这些挑战,基于 STDP 的 SNN 监督学习算法仍然具有广阔的应用前景。其在能效、实时性以及处理时间序列数据方面的优势,使其在诸如机器人控制、脑机接口和模式识别等领域具有巨大的潜力。
未来的研究方向包括:
-
更高效的 STDP 变体: 开发更有效的 STDP 变体,以提高学习效率和避免局部最小值。
-
结合其他学习规则: 将 STDP 与其他学习规则结合,例如 Hebbian 学习规则,以提高学习能力。
-
改进的 BP 算法: 开发更适用于 SNN 的 BP 算法,以更好地处理 SNN 的非线性特性。
-
新的网络架构: 设计更适合 STDP 学习的 SNN 网络架构。
-
理论分析: 对 STDP 学习规则和 SNN 的学习过程进行更深入的理论分析,以指导算法设计。
总而言之,基于 STDP 的 SNN 监督学习算法是 SNN 领域一个活跃的研究方向。尽管面临诸多挑战,其潜在的优势使其成为未来神经网络研究的重要方向之一。 通过不断改进算法和探索新的研究方向,相信基于 STDP 的 SNN 监督学习算法将为人工智能领域带来新的突破。
📣 部分代码
for j=2:para.layer-1
neuron_P{j}=min(para.Imax,max(para.Imin,neuron_P{j}+dt./para.tau_P.*(-neuron_P{j}+weight{j-1}'*ui{j-1}./dt+weight_Inv{j}*ui{j+1}./dt)));
end;
j=para.layer;
neuron_P{j}=min(para.Imax,max(para.Imin,neuron_P{j}+dt./para.tau_P.*(-neuron_P{j}+weight{j-1}'*ui{j-1}./dt)));
end;
%%%%%%%%%%%%%
for iT=1:1:wind/dt
for j=1:para.layer
neuron_V{j}(neuron_V{j}>=para.spike)=para.V_reset;
neuron_V{j}=neuron_V{j}+dt./para.tau_V.*(para.E_L-neuron_V{j}-para.rm.*neuron_P{j}.*(neuron_V{j}-para.E_s));
neuron_V{j}((neuron_V{j}>=para.V_th))=para.spike;
u{j}(:,:,iT)=neuron_V{j}==para.spike;
end;
for j=2:para.layer-1
neuron_P{j}=min(para.Imax,max(para.Imin,neuron_P{j}+dt./para.tau_P.*(-neuron_P{j}+weight{j-1}'*u{j-1}(:,:,iT)./dt+weight_Inv{j}*u{j+1}(:,:,iT)./dt)));
end;
j=para.layer;
% u{j}=random('poisson',act(y*para.I0)*dt);
neuron_P{j}=min(para.Imax,max(para.Imin,neuron_P{j}+dt./para.tau_P.*(-neuron_P{j}+weight{j-1}'*u{j-1}(:,:,iT)./dt)));
end;
%%%%%%%%%%%%%
for iT=wind/dt+1:1:(time+2*wind)/dt
for j=1:para.layer
neuron_V{j}(neuron_V{j}>=para.spike)=para.V_reset;
% neuron_V{j}=neuron_V{j}+dt./para.tau_V.*(para.E_L-neuron_V{j}+para.Rm.*neuron_P{j}+para.Rm*neuron_I{j});
% neuron_V{j}=neuron_V{j}+dt./para.tau_V.*(para.E_L-neuron_V{j}+para.Rm.*min(para.Imax,max(0,neuron_P{j}+neuron_I{j})));
neuron_V{j}=neuron_V{j}+dt./para.tau_V.*(para.E_L-neuron_V{j}-para.rm.*neuron_P{j}.*(neuron_V{j}-para.E_s));
neuron_V{j}((neuron_V{j}>=para.V_th))=para.spike;
u{j}(:,:,iT)=neuron_V{j}==para.spike;
end;
for j=2:para.layer-1
neuron_P{j}=min(para.Imax,max(para.Imin,neuron_P{j}+dt./para.tau_P.*(-neuron_P{j}+weight{j-1}'*u{j-1}(:,:,iT)./dt+weight_Inv{j}*u{j+1}(:,:,iT)./dt)));
end;
j=para.layer;
% u{j}=random('poisson',act(y*para.I0)*dt);
% neuron_P{j}=para.I0*ext;
neuron_P{j}=min(para.Imax,max(para.Imin,neuron_P{j}+dt./para.tau_P.*(-neuron_P{j}+weight{j-1}'*u{j-1}(:,:,iT)./dt+beta*(para.I0*ext-neuron_P{j}))));
end;
%%%%%%%%%%%%%
for iT=wind/dt+1:1:(time+wind)/dt
for j=1:para.layer-1
chan{j}=chan{j}+u{j}(:,:,iT)*(sum(u{j+1}(:,:,iT-wind/dt:1:iT+wind/dt).*permute(f_STDP(-wind:dt:wind),[1,3,2]),3))';
end;
for j=1:para.layer-1
chan_Inv{j}=chan_Inv{j}+(sum(u{j}(:,:,iT-wind/dt:1:iT+wind/dt).*permute(f_STDP(-wind:dt:wind),[1,3,2]),3))*u{j+1}(:,:,iT)';
end;
end;
% for j=1:para.layer-1
% chan{j}=chan{j}-para.A_pos(j)*para.STDP_modi*sum(sum(u{j}(:,:,window/dt+1:1:(time+window)/dt),3),2).*weight{j};
% chan_Inv{j}=chan_Inv{j}-para.A_pos(j)*para.STDP_modi*sum(sum(u{j+1}(:,:,window/dt+1:1:(time+window)/dt),3),2)'.*weight_Inv{j};
% end;
end;
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇