【前推回代法】含有分布式电源的三相不平衡配电网潮流计算【IEEE33节点】附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

电力系统的稳定可靠运行是社会经济发展的重要保障,而配电网作为连接输电网与用户的桥梁,其运行状态的精确掌握至关重要。随着分布式电源(Distributed Generation, DG)的日益普及,传统的配电网呈现出分布式、多样化、复杂化的趋势,三相不平衡问题也日益突出。因此,针对含DG的三相不平衡配电网进行准确高效的潮流计算显得尤为重要。本文将深入探讨基于前推回代法(Forward-Backward Sweep, FBS)的含分布式电源的三相不平衡配电网潮流计算方法,并结合IEEE33节点系统进行案例分析,旨在为相关研究提供参考。

一、含DG的三相不平衡配电网潮流计算挑战

相比于传统的平衡配电网,含DG的三相不平衡配电网潮流计算面临着以下挑战:

  1. 三相不平衡性: 配电网的线路参数、负荷特性以及DG接入方式往往存在差异,导致电压和电流在不同相之间呈现不平衡状态。这种不平衡性使得传统的单相等值模型无法准确描述配电网的运行状态,需要采用三相模型进行精确计算。

  2. DG接入带来的影响: DG的接入改变了配电网的潮流分布和电压分布,尤其是在DG容量较大或者接入位置不合理的情况下,可能会引起电压越限、潮流倒送等问题。因此,在潮流计算中需要准确模拟DG的运行特性,并考虑其对电网的影响。

  3. 复杂模型的建立: 三相不平衡配电网的建模过程相对复杂,需要考虑线路参数、变压器绕组连接方式、负荷模型等因素,并建立相应的三相阻抗矩阵和节点导纳矩阵。

  4. 计算的收敛性: 含DG的配电网潮流计算可能存在收敛性问题,尤其是在DG渗透率较高或者负荷变化剧烈的情况下。因此,需要选择合适的迭代算法和收敛判据,以保证计算的精度和效率。

二、前推回代法(FBS)原理与应用

前推回代法(FBS)是一种迭代算法,其基本原理是将配电网视为一个辐射型网络,通过前推过程计算电压降和潮流分布,然后通过回代过程更新节点电压,并不断迭代直到收敛。FBS算法具有简单易懂、计算速度快、收敛性好的特点,适用于求解辐射型配电网的潮流问题。

1. 前推过程(Forward Sweep):

从根节点(一般为变电站母线)开始,沿辐射型网络逐步向下游节点推进。在每个节点,根据已知的电压和线路阻抗,计算线路潮流和下游节点的电压。前推过程的计算公式如下:

  • 线路潮流计算:

     I = (V_up - V_down) / Z 其中 I 为线路电流, V_up 为上游节点电压, V_down 为下游节点电压, Z 为线路阻抗。

  • 节点电压计算:

     V_down = V_up - I * Z

2. 回代过程(Backward Sweep):

从末端节点开始,沿辐射型网络逐步向上游节点回代。在每个节点,根据下游节点的电压和线路潮流,更新当前节点的电压。回代过程的计算公式如下:

  • 节点电压更新:

     V_up = V_down + I * Z

3. 迭代与收敛判据:

前推和回代过程不断循环迭代,直到满足收敛判据。常用的收敛判据是节点电压变化量的最大值小于预设的阈值,即:

max(|V_i^(k+1) - V_i^(k)|) < ε 其中 V_i^(k+1) 为第 k+1 次迭代时节点 i 的电压, V_i^(k) 为第 k 次迭代时节点 i 的电压, ε 为收敛阈值。

4. 含DG情况下的修正:

在含DG的情况下,需要将DG作为注入节点进行处理。在回代过程中,需要将DG的输出功率(或者电压)考虑到节点电压的更新中。常用的处理方式是将DG视为PQ节点(指定有功和无功功率)或者PV节点(指定电压幅值和有功功率),并根据其特性进行计算。

三、基于前推回代法的含DG的三相不平衡配电网潮流计算步骤

基于FBS的含DG的三相不平衡配电网潮流计算步骤如下:

  1. 数据准备: 准备配电网的线路参数、节点信息、负荷数据、DG参数等数据。需要建立三相模型,并考虑线路阻抗的不平衡性。

  2. 初始化: 初始化所有节点电压,一般可将根节点电压设置为额定电压,其他节点电压设置为接近额定电压的值。

  3. 前推过程: 从根节点开始,按照辐射型网络的拓扑结构,依次计算线路潮流和下游节点电压。需要采用三相模型进行计算,并考虑线路阻抗的不平衡性。

  4. 回代过程: 从末端节点开始,按照辐射型网络的拓扑结构,依次更新上游节点电压。需要将DG的输出功率(或者电压)考虑到节点电压的更新中。

  5. 收敛判断: 判断是否满足收敛判据。如果满足,则停止迭代;否则,返回步骤3,继续迭代。

  6. 结果输出: 输出各节点的电压幅值、相角、线路潮流、DG的输出功率等结果。

⛳️ 运行结果

🔗 参考文献

[1] 顾晨,乐秀璠,张晓明.基于改进前推回代法的弱环配电网三相潮流计算[J].电力系统保护与控制, 2010(19):5.DOI:10.3969/j.issn.1674-3415.2010.19.030.

[2] 赵晶晶,李新,许中.含分布式电源的三相不平衡配电网潮流计算[J].电网技术, 2009(3):5.DOI:10.1016/j.apm.2007.10.019.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值