【电力系统】计及光伏电站快速无功响应特性的分布式电源优化配置方法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

分布式电源(Distributed Generation, DG)的广泛接入对传统电力系统带来了诸多挑战,同时也提供了提升系统效率、可靠性和可持续性的机会。其中,光伏(Photovoltaic, PV)电站作为一种重要的分布式电源,其大规模并网对电网电压稳定性、功率质量等方面产生了显著影响。传统的无功优化策略通常无法充分利用光伏电站的无功调节能力,尤其是在面对快速变化的负荷需求和光照条件时。因此,研究计及光伏电站快速无功响应特性的分布式电源优化配置方法,对提升电力系统运行性能具有重要的理论意义和工程价值。

本文旨在探讨一种优化配置分布式电源,特别是光伏电站,使其能够充分发挥快速无功响应特性,从而提高电力系统运行效率和稳定性的方法。文章将首先分析光伏电站的无功响应特性及其对电力系统的影响,随后深入探讨现有分布式电源优化配置方法的局限性,最后提出一种计及光伏电站快速无功响应特性的优化配置策略,并展望未来的研究方向。

一、光伏电站的无功响应特性及其对电力系统的影响

光伏电站的无功功率调节能力主要依赖于其并网逆变器的控制策略。不同于传统同步发电机,光伏逆变器可以通过快速调节功率因数来吸收或发出无功功率,以维持本地电压稳定和支撑电网电压。这种快速无功响应特性使得光伏电站能够在毫秒级的时间尺度内对电网电压波动做出反应,从而有效抑制电压骤降、改善功率因数和提高电网电压稳定性。

然而,光伏电站的无功响应能力也受到诸多因素的限制。首先,逆变器的容量是有限的,其有功功率和无功功率的输出存在着耦合关系,即有功功率输出的提高会降低逆变器可提供的无功功率容量。其次,光伏电站的无功控制策略也直接影响其无功响应效果。传统的固定功率因数控制策略无法充分利用逆变器的无功容量,而动态无功控制策略则需要精确的电网状态信息和复杂的控制算法。最后,光伏电站的地理位置分布和电网结构也会影响其无功响应效果。例如,在电网末端接入的光伏电站对本地电压的支撑作用更为显著。

大规模光伏电站接入电网可能产生以下影响:

  • 电压波动:

     光伏发电的间歇性和波动性会导致电网电压波动,尤其是在高渗透率情况下。

  • 电压越限:

     光伏电站在光照充足时,可能会导致电网电压升高,甚至超过允许范围。

  • 功率质量下降:

     光伏逆变器产生的谐波电流会影响电网的功率质量。

  • 电网阻塞:

     光伏电站的发电功率可能超过输电线路的容量,导致电网阻塞。

因此,合理利用光伏电站的快速无功响应特性,并对其进行优化配置,是解决上述问题的关键。

二、现有分布式电源优化配置方法的局限性

现有的分布式电源优化配置方法主要集中在以下几个方面:

  • 目标函数的选择:

     常见的优化目标包括最小化网损、提高电压稳定裕度、降低投资成本等。

  • 约束条件的设计:

     约束条件通常包括电压限制、电流限制、DG容量限制等。

  • 优化算法的应用:

     常用的优化算法包括遗传算法、粒子群算法、模拟退火算法等。

然而,现有的优化配置方法存在以下局限性:

  • 静态优化:

     大多数方法基于静态的电网运行状态进行优化,无法有效应对光伏发电的动态变化。

  • 忽略快速无功响应特性:

     很少有方法能够充分考虑光伏电站的快速无功响应特性,将其作为一种主动的控制手段。

  • 简化电网模型:

     为了简化计算,一些方法会简化电网模型,导致优化结果与实际运行情况存在偏差。

  • 缺乏协调控制机制:

     现有方法往往只关注单个光伏电站的优化配置,缺乏与其他分布式电源和传统电源的协调控制机制。

因此,为了更好地利用光伏电站的快速无功响应特性,需要提出一种更为先进的分布式电源优化配置方法。

三、计及光伏电站快速无功响应特性的优化配置策略

针对现有优化配置方法的局限性,本文提出一种计及光伏电站快速无功响应特性的优化配置策略,该策略主要包括以下几个关键要素:

  1. 动态电网建模: 采用时序仿真技术,建立能够反映光伏发电动态变化的电网模型。该模型应能够精确模拟光伏发电的间歇性和波动性,以及电网负荷的动态变化。

  2. 光伏电站无功响应特性建模: 建立能够反映光伏逆变器无功响应能力的数学模型。该模型应包括逆变器的容量限制、有功功率和无功功率的耦合关系,以及无功控制策略对无功响应效果的影响。

  3. 优化目标的设计: 除了传统的最小化网损和提高电压稳定裕度等目标外,还应考虑光伏电站无功响应带来的附加效益,例如降低电压波动和提高功率质量。

  4. 约束条件的设计: 在传统的电压限制和电流限制等约束条件的基础上,还应考虑光伏逆变器的容量限制和无功响应速度限制。

  5. 优化算法的选择: 采用能够处理大规模非线性优化问题的智能算法,例如改进的粒子群算法或遗传算法。该算法应能够有效地搜索全局最优解,并避免陷入局部最优解。

  6. 协调控制机制的建立: 建立光伏电站与其他分布式电源和传统电源的协调控制机制。该机制应能够根据电网的运行状态,协调各电源的出力,从而实现全局优化。具体来说,可以采用以下几种控制策略:

    • 集中式控制:

       由中央控制器统一调度各电源的出力,以实现全局优化。该策略需要精确的电网状态信息和强大的计算能力。

    • 分布式控制:

       各电源根据本地的信息,自主调节出力,以实现局部优化。该策略的优点是响应速度快、可靠性高,但可能无法保证全局最优。

⛳️ 运行结果

🔗 参考文献

[1] 钱军.考虑分布式发电的配电网综合负荷建模方法研究[D].湖南大学,2010.DOI:10.7666/d.d146732.

[2] 张文浩.面向信息物理融合电力系统弹性提升的运行与控制方法研究[D].华南理工大学,2021.

[3] 曾凡涛,官军.考虑温度和光照季节差异性的光伏微网"源-荷-储"优化运行策略[J].湖南农机, 2019, 046(009):74-79,81.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值