感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。
Python多线程编程:深入理解threading模块及代码实战
在Python编程中,多线程是一种常用的并发编程方式,它可以有效地提高程序的执行效率,特别是在处理I/O密集型任务时。Python提供了threading
模块,使得多线程编程变得相对简单。本文将深入探讨threading
模块的基础知识,并通过实例演示多线程的应用。
1. 多线程基础概念
在开始之前,让我们先了解一些多线程编程的基本概念:
- 线程(Thread):是操作系统能够进行运算调度的最小单位,通常在一个进程内部。
- 多线程(Multithreading):是指在同一程序中同时运行多个线程。
- GIL(Global Interpreter Lock):Python解释器的全局解释器锁,限制同一时刻只能有一个线程执行Python字节码,因此在CPU密集型任务中,多线程并不能充分利用多核处理器。
2. threading模块基础
threading
模块提供了创建和管理线程的工具。以下是一些常用的threading
模块中的类和函数:
Thread
类:用于创建线程的类,通过继承Thread
类并实现run
方法来定义线程的执行逻辑。start()
方法:启动线程。join()
方法:等待线程执行结束。active_count()
函数:获取当前活动线程的数量。
3. 代码实战:多线程下载图片
下面通过一个实例来演示多线程的应用,我们将使用多线程来下载一系列图片。
import threading
import requests
from queue import Queue
class ImageDownloader:
def \_\_init\_\_(self, urls):
self.urls = urls
self.queue = Queue()
def download\_image(self, url):
response = requests.get(url)
if response.status_code == 200:
filename = url.split("/")[-1]
with open(filename, "wb") as f:
f.write(response.content)
print(f"Downloaded: {filename}")
def worker(self):
while True:
url = self.queue.get()
if url is None:
break
self.download_image(url)
self.queue.task_done()