二分+并查集——扩散

文章介绍了一种使用并查集和曼哈顿距离解决二维空间内点扩散形成连通块问题的方法,通过二分查找确定最早时间。
摘要由CSDN通过智能技术生成

扩散

题目描述

一个点每过一个单位时间就会向四个方向扩散一个距离,如图。

两个点 a a a b b b 连通,记作 e ( a , b ) e(a,b) e(a,b),当且仅当 a , b a,b a,b 的扩散区域有公共部分。连通块的定义是块内的任意两个点 u , v u,v u,v 都必定存在路径 e ( u , a 0 ) , e ( a 0 , a 1 ) , ⋯   , e ( a k , v ) e(u,a_0),e(a_0,a_1),\cdots,e(a_k,v) e(u,a0),e(a0,a1),,e(ak,v)。给定平面上的 n n n 给点,问最早什么时刻它们形成一个连通块。

输入格式

第一行一个数 n n n,以下 n n n 行,每行一个点坐标。

输出格式

一个数,表示最早的时刻所有点形成连通块。

样例 #1

样例输入 #1

2
0 0
5 5

样例输出 #1

5

提示

数据范围及约定

对于 20 % 20\% 20% 的数据,满足 1 ≤ N ≤ 5 ; 1 ≤ X i , Y i ≤ 50 1 \le N \le 5;1 \le X_i,Y_i \le 50 1N5;1Xi,Yi50

对于 100 % 100\% 100% 的数据,满足 1 ≤ N ≤ 50 1 \le N \le 50 1N50 1 ≤ X i , Y i ≤ 1 0 9 1 \le X_i,Y_i \le 10^9 1Xi,Yi109

思路

对于连通性问题,我们往往可以跟并查集联系起来,这道题说了只能沿四个方向走(有点像菱形扩散),我们可以联想到曼哈顿距离,又因为本道题每个点都可以扩散,因此对于样例,不止(0,0)可以扩散,(5,5)也可以扩散。然后当我们假设一个答案时间,如果两个点的曼哈顿距离<=两倍的我们假设的时间问题:这里为什么是两倍呢?因为例如样例:两边都可以扩散,因此相对距离就得是2*t),而且二者还不在同一个集合中(也就是说并查集在拥有同一个祖先节点),我们就将二者放入同一集合中。

代码

//我感觉连通性往往跟并查集有关,然后我们可以试着给定答案,看看答案是否满足
//这道题有点曼哈顿距离给我的感觉(因为它只能走四个方位,不很想曼哈顿距离不)

#include<iostream>
#include<algorithm>
#include<cstring>

#define x first
#define y second

using namespace std;

typedef pair<int,int>PII;

const int N = 55,M = 1e9;

int p[N];
PII w[N];
int n;

int find(int x){
    if(x!=p[x])p[x]=find(p[x]);
    return p[x];
}

bool check(int x){
    
    for(int i=1;i<=n;i++)p[i]=i;
    
    for(int i=1;i<=n;i++){
        for(int j=i+1;j<=n;j++){
            if(abs(w[i].x-w[j].x)+abs(w[i].y-w[j].y)<=2*x&&find(i)!=find(j)){
                p[find(i)]=find(j);
            }
        }
    }
    
    int cnt=0;
    for(int i=1;i<=n;i++){
        if(i==find(i))cnt++;
    }
    return cnt==1;
}

int main(){
    cin>>n;
    
    for(int i=1;i<=n;i++)cin>>w[i].x>>w[i].y;
    
    int l=-1,r=M+1;
    //我们二分时间
    while(l+1!=r){
        int mid=(l+r)>>1;
        if(check(mid))r=mid;
        else l=mid;
    }
    cout<<r;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值