【初识Anaconda】(prompt虚拟环境的创建与删除)

本文详细介绍了如何使用Anaconda创建和管理虚拟环境,包括创建虚拟环境、列出所有环境、删除环境以及激活和退出环境。接着,讲解了如何在虚拟环境中安装GPU版本的PyTorch库,并检查其可用性。此外,还涵盖了DGL库的安装与版本管理。最后,讨论了如何在虚拟环境中安装其他库如numpy和Pandas,并将虚拟环境链接到Jupyter内核,以便于使用JupyterNotebook。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Anaconda

虚拟环境的创建

conda create -n TEST python=3.11

在这里插入图片描述

列出所有的虚拟环境

conda env list

在这里插入图片描述

删除TEST虚拟环境

conda remove -n TEST --all

在这里插入图片描述

低版本的Anaconda可以安装高版本的库

进入虚拟环境

conda activate DL    #DL之前创建的一个虚拟环境

在这里插入图片描述

安装GPU版本的pytorch库

pytorch官网 :查找安装的版本对应的代码
在这里插入图片描述
在这里插入图片描述

检验pytorch库是否安装成功

import torch
torch.cunda.is_available()

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

dgl安装

dgl官网:找到对应安装代码
若已经安装了不需要的DGL版本,比如0.7.1想替换为0.4.3版本,则要删除现有版本:
默认删除当前DGL:conda uninstall -c dglteam dgl-cuda10.2
(cuda10.2可根据自己的环境调整)
指定删除版本conda uninstall -c dglteam dgl-cuda10.2==0.5.0
(cuda10.2==0.5.0可根据自己的环境调整,使用 conda list 可以查看使用的当前版本)

若尚未安装DGL
直接指定版本即可, 例如:

conda install -c dglteam dgl-cuda10.2==0.4.3post2

查看dgl版本名称的网站
因为0.9和1.x有些地方不兼容
去上面那个网站下载进行本地安装

在虚拟环境中安装库

(1)安装numpy

pip install numpy==1.21.5

在这里插入图片描述

(2)安装Pandas

pip install Pandas==1.2.4

如果安装失败用下面的命令

pip install Pandas==1.2.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

退出虚拟环境

conda deactivate

在这里插入图片描述

虚拟环境链接Jupyter内核

(1)列出jupyter内核列表

# 列出 Jupyter 的内核列表
jupyter kernelspec list

(2)安装ipykernel

# 安装 ipykernel
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple ipykernel

(3)将虚拟环境导入 Jupyter 的 kernel 中

# 将虚拟环境导入 Jupyter 的 kernel 中
python -m ipykernel install --user --name=DL

(4)删除虚拟环境kernel内核

# 删除虚拟环境的 kernel 内核
jupyter kernelspec remove 环境名
nvidia更新路径

C:\NVIDIA\DisplayDriver\561.09\Win11_Win10-DCH_64\Internationa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值