目录
Anaconda
虚拟环境的创建
conda create -n TEST python=3.11

列出所有的虚拟环境
conda env list

删除TEST虚拟环境
conda remove -n TEST --all

低版本的Anaconda可以安装高版本的库
进入虚拟环境
conda activate DL #DL之前创建的一个虚拟环境

安装GPU版本的pytorch库
pytorch官网 :查找安装的版本对应的代码


检验pytorch库是否安装成功
import torch
torch.cunda.is_available()



dgl安装
dgl官网:找到对应安装代码
若已经安装了不需要的DGL版本,比如0.7.1想替换为0.4.3版本,则要删除现有版本:
默认删除当前DGL:conda uninstall -c dglteam dgl-cuda10.2
(cuda10.2可根据自己的环境调整)
指定删除版本:conda uninstall -c dglteam dgl-cuda10.2==0.5.0
(cuda10.2==0.5.0可根据自己的环境调整,使用 conda list 可以查看使用的当前版本)
若尚未安装DGL:
直接指定版本即可, 例如:
conda install -c dglteam dgl-cuda10.2==0.4.3post2
查看dgl版本名称的网站
因为0.9和1.x有些地方不兼容
去上面那个网站下载进行本地安装
在虚拟环境中安装库
(1)安装numpy
pip install numpy==1.21.5

(2)安装Pandas
pip install Pandas==1.2.4
如果安装失败用下面的命令
pip install Pandas==1.2.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

退出虚拟环境
conda deactivate

虚拟环境链接Jupyter内核
(1)列出jupyter内核列表
# 列出 Jupyter 的内核列表
jupyter kernelspec list
(2)安装ipykernel
# 安装 ipykernel
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple ipykernel
(3)将虚拟环境导入 Jupyter 的 kernel 中
# 将虚拟环境导入 Jupyter 的 kernel 中
python -m ipykernel install --user --name=DL
(4)删除虚拟环境kernel内核
# 删除虚拟环境的 kernel 内核
jupyter kernelspec remove 环境名
nvidia更新路径
C:\NVIDIA\DisplayDriver\561.09\Win11_Win10-DCH_64\Internationa
本文详细介绍了如何使用Anaconda创建和管理虚拟环境,包括创建虚拟环境、列出所有环境、删除环境以及激活和退出环境。接着,讲解了如何在虚拟环境中安装GPU版本的PyTorch库,并检查其可用性。此外,还涵盖了DGL库的安装与版本管理。最后,讨论了如何在虚拟环境中安装其他库如numpy和Pandas,并将虚拟环境链接到Jupyter内核,以便于使用JupyterNotebook。
1052

被折叠的 条评论
为什么被折叠?



