PHM2010铣刀数据集磨损状态识别可做点介绍

PHM2010铣刀数据集磨损状态识别可做点介绍

基于深度学习/机器学习的方法大致都可以分为三个步骤

数据预处理

铣刀数据集共采集有7个通道的信号,因采样频率高,采集的点数过多,因此可从以下几点入手:

输入信号数量入手,7个传感器,三种类型,可从此方面入手

传感器数量

数据预处理,如降噪,分解重构等(结合信号处理知识)

emd降噪,vmd降噪等

信号异常点(离群点等)去除,从异常点检测的角度入手

四分位数法等

一维数据转二维图像的角度入手,如一些常见的时间序列成像方法

格拉姆角场、递归图、短时傅里叶变换、连续小波变换等

特征提取

时域、频域、时频域特征提取,或各种自编码器深层特征提取,也可结合其它方法

模型

模型方面可做点就非常多了

机器学习模型

SVM、KNN等

深度学习模型

CNN、GNN等

机器学习模型联合深度学习模型

CNN+SVM

模型某层特征可视化

聚类方法:t-sne聚类等

输出

确定刀具磨损阶段

可分为3、4、5阶段。对阶段划分的合理性进行解释,如磨损曲线的斜率等其他因素。

样本数量

分为多个阶段时,可能某个阶段的样本数量过少。考虑从样本扩充,样本不平衡入手。

迁移学习

nasa的刀具数据集,phm2010数据集,以及其他结构或自己做的数据集可以联合使用,进行基于迁移学习的故障诊断。

phm2010数据集链接

链接:https://pan.baidu.com/s/1aiRsda_qKc75EdnJOs-RzQ?pwd=mmbj 
提取码:mmbj 
### PHM2010 数据集预处理方法 #### 了解数据结构 为了有效地对PHM2010数据集进行预处理,首先要理解其内部结构。通过读取单个CSV文件并查看前几行数据,能够初步掌握数据的排列格式、所包含的数据类型及其大致取值范围等信息[^3]。 ```python import pandas as pd original_data = pd.read_csv('path_to_phm2010_dataset/file.csv', header=None) print(f"Data shape: {original_data.shape}") print("\nFirst few rows of the dataset:") print(original_data.head()) ``` #### 清洗与标准化 对于任何机器学习项目而言,清洗和标准化都是至关重要的步骤之一。这通常涉及去除缺失值、异常值检测以及特征缩放等工作。针对PHM2010这样的工业设备监测数据集来说,还需要特别注意时间戳字段的一致性和连续性校验。 - **处理缺失值**:如果存在大量缺失记录,则可能需要考虑删除这些样本;而对于少量丢失的情况可以通过插补法填补。 - **消除噪声**:利用统计学手段识别并移除那些明显偏离正常趋势的数据。 - **统一量纲单位**:确保所有传感器测量结果处于相同数量级范围内以便于模型训练收敛更快更稳定。 #### 特征工程 构建有效的输入向量是提高预测性能的关键所在。可以从原始信号中提取多种有意义的时间序列特性作为新维度加入到最终用于建模的数据集中去: - 统计量(均值、方差、偏度) - 频域变换后的系数(傅里叶变换得到频谱图上的峰值位置强度) - 波形因子(峰谷比)、脉冲率等等机械振动领域特有的指标计算 #### 转换存储格式 考虑到MATLAB环境下的操作便利性,在完成上述准备工作之后还可以把整理好的表格资料另存为`.mat`形式供后续实验调用方便[^4]。 ```python from scipy.io import savemat processed_data_dict = {'data': processed_df.values} savemat('output_file.mat', processed_data_dict) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

慢慢的不急

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值