PHM2010铣刀数据集磨损状态识别可做点介绍

PHM2010铣刀数据集磨损状态识别可做点介绍

基于深度学习/机器学习的方法大致都可以分为三个步骤

数据预处理

铣刀数据集共采集有7个通道的信号,因采样频率高,采集的点数过多,因此可从以下几点入手:

输入信号数量入手,7个传感器,三种类型,可从此方面入手

传感器数量

数据预处理,如降噪,分解重构等(结合信号处理知识)

emd降噪,vmd降噪等

信号异常点(离群点等)去除,从异常点检测的角度入手

四分位数法等

一维数据转二维图像的角度入手,如一些常见的时间序列成像方法

格拉姆角场、递归图、短时傅里叶变换、连续小波变换等

特征提取

时域、频域、时频域特征提取,或各种自编码器深层特征提取,也可结合其它方法

模型

模型方面可做点就非常多了

机器学习模型

SVM、KNN等

深度学习模型

CNN、GNN等

机器学习模型联合深度学习模型

CNN+SVM

模型某层特征可视化

聚类方法:t-sne聚类等

输出

确定刀具磨损阶段

可分为3、4、5阶段。对阶段划分的合理性进行解释,如磨损曲线的斜率等其他因素。

样本数量

分为多个阶段时,可能某个阶段的样本数量过少。考虑从样本扩充,样本不平衡入手。

迁移学习

nasa的刀具数据集,phm2010数据集,以及其他结构或自己做的数据集可以联合使用,进行基于迁移学习的故障诊断。

phm2010数据集链接

链接:https://pan.baidu.com/s/1aiRsda_qKc75EdnJOs-RzQ?pwd=mmbj 
提取码:mmbj 
### PHM2010 数据集信号去噪的方法和技术 对于PHM2010数据集中信号的去噪处理,可以采用多种先进的技术来提升信号的质量。考虑到该数据集涉及复杂的机械设备运行状态监测,其中包含了不同类型的故障模式下的振动信号。 #### 小波阈值去噪 小波变换因其良好的时频局部化特性,在机械故障诊断中广泛应用。通过对原始信号进行多尺度分解,能够有效分离出高频噪声成分和低频有用信息。设定合理的阈值函数与门限参数后,再重构得到较为纯净的目标信号[^1]。 ```matlab % MATLAB代码实现小波阈值去噪 function denoisedSignal = waveletDenoising(signal, level, wname) % signal: 输入待去噪的一维向量形式的时间序列; % level: 分解层数; % wname: 所选用的小波基名称字符串. [C,L]=wavedec(signal,level,wname); THR=sqrt(2*log(length(signal))); C=wthcoef('d',C,L,'soft',THR); denoisedSignal=waverec(C,L,wname); end ``` #### 改进型EEMD算法 针对传统经验模态分解存在的端效应及模态混叠现象,引入自适应白噪音辅助机制即集合经验模态分解(EEMD),并通过优化IMFs筛选策略进一步提高降噪效果。此方法特别适用于非平稳随机过程分析[^2]。 ```matlab % EEMD改进版MATLAB伪代码框架示意 addpath('eemd'); % 假设已安装好对应工具包 imfs=eemd(x,Nstd,NE); % 对输入x执行N次加噪平均运算获取本征模态函数组 for i=1:length(imfs)-1 if isNoiseComponent(imfs{i}) continue; % 跳过判定为纯噪声分量的部分 end reconstructed_signal=reconstructed_signal+imfs{i}; end ``` #### 多分辨奇异值分解(SVD) 利用SVD可将矩阵映射至特征空间内完成维度压缩的同时达到抑制冗余的目的;结合多分辨率概念,则可以在更精细粒度下操作从而更好地保留细微结构特征而不至于丢失过多细节信息。 ```python import numpy as np from scipy.linalg import svd def multi_resolution_svd_denoise(matrix_data): U, s, Vh = svd(matrix_data, full_matrices=False) threshold = calculate_threshold(s) # 自定义计算截断标准 filtered_singular_values = [] for value in s: if value >= threshold: filtered_singular_values.append(value) else: filtered_singular_values.append(0) clean_matrix = np.dot(U * filtered_singular_values, Vh) return clean_matrix ``` 上述三种方案各有优劣之处,具体选择取决于实际应用场景需求以及对计算资源消耗考量等因素综合权衡决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

慢慢的不急

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值