PHM2010铣刀数据集磨损状态识别可做点介绍
基于深度学习/机器学习的方法大致都可以分为三个步骤
数据预处理
铣刀数据集共采集有7个通道的信号,因采样频率高,采集的点数过多,因此可从以下几点入手:
输入信号数量入手,7个传感器,三种类型,可从此方面入手
传感器数量
数据预处理,如降噪,分解重构等(结合信号处理知识)
emd降噪,vmd降噪等
信号异常点(离群点等)去除,从异常点检测的角度入手
四分位数法等
一维数据转二维图像的角度入手,如一些常见的时间序列成像方法
格拉姆角场、递归图、短时傅里叶变换、连续小波变换等
特征提取
时域、频域、时频域特征提取,或各种自编码器深层特征提取,也可结合其它方法
模型
模型方面可做点就非常多了
机器学习模型
SVM、KNN等
深度学习模型
CNN、GNN等
机器学习模型联合深度学习模型
CNN+SVM
模型某层特征可视化
聚类方法:t-sne聚类等
输出
确定刀具磨损阶段
可分为3、4、5阶段。对阶段划分的合理性进行解释,如磨损曲线的斜率等其他因素。
样本数量
分为多个阶段时,可能某个阶段的样本数量过少。考虑从样本扩充,样本不平衡入手。
迁移学习
nasa的刀具数据集,phm2010数据集,以及其他结构或自己做的数据集可以联合使用,进行基于迁移学习的故障诊断。
phm2010数据集链接
链接:https://pan.baidu.com/s/1aiRsda_qKc75EdnJOs-RzQ?pwd=mmbj
提取码:mmbj
5329

被折叠的 条评论
为什么被折叠?



