rk3576上部署deepseek

1. 部署方式

deepseek的部署方式有两种:

1.开发板内直接部署,这种方式简单快捷,但是没有用上rk芯片的npu性能,完全使用CPU来进行推理

2.使用RKLLM 软件堆栈将 AI 模型部署到 Rockchip 芯片上

2. 开发板部署Deepseek-r1模型

部署流程:

  1. 安装必要命令;
  2. 安装 ollama
  3. 部署 deepseek

2.1 安装必要命令

安装curl

#升级软件
sudo apt-get update
#安装curl
sudo apt-get install curl
通过以上两条指令,完成了curl命令的安装。

2.2 安装 ollama

打开ollama

在这里插入图片描述

运行上图所示指令:

curl -fsSL https://ollama.com/install.sh | sh
>>> Installing ollama to /usr/local
>>> Downloading Linux arm64 bundle
######################################################################## 100.0%
>>> Creating ollama user...
>>> Adding ollama user to render group...
>>> Adding ollama user to video group...
>>> Adding current user to ollama group...
>>> Creating ollama systemd service...
>>> Enabling and starting ollama service...
Created symlink /etc/systemd/system/default.target.wants/ollama.service → /etc/systemd/system/ollama.service.
>>> The Ollama API is now available at 127.0.0.1:11434.
>>> Install complete. Run "ollama" from the command line.
WARNING: No NVIDIA/AMD GPU detected. Ollama will run in CPU-only mode.

2.3 部署 deepseek

ollama 的官网上,选择 "Models"

在这里插入图片描述

1.5B的模型大概1.1G,复制指令黏贴到命令行里,就可以自动开始下载了

$ollama run deepseek-r1:1.5b
pulling manifest
pulling aabd4debf0c8... 100% ▕▏ 1.1 GB
pulling 369ca498f347... 100% ▕▏  387 B
pulling 6e4c38e1172f... 100% ▕▏ 1.1 KB
pulling f4d24e9138dd... 100% ▕▏  148 B
pulling a85fe2a2e58e... 100% ▕▏  487 B
verifying sha256 digest
writing manifest
success

2.4 测试deepseek

开发板下载deepseek完成后使用命令打开:

How to earn an annual salary of millions
<think>

</think>

To earn an annual salary of millions, the approach will depend on several factors such as your industry, work location, and level of experience. Here are some general strategies:

### 1. **High-Paying Jobs**
   - **Specialization:** Work in industries with high demand for specialized skills.
   - **Location:** Consider working remotely or in a high-demand region.
   - **Experience:** Look into roles that require exceptional technical expertise and strategic thinking.

### 2. **Online Courses and Training Programs**
   - **Specialized Training:** Enroll in online courses or certifications related to your desired field, such as data science, engineering, finance, or law.
   - **Skill Development:** Focus on acquiring advanced skills through platforms like Coursera, Udemy, or LinkedIn Learning.

### 3. **Consulting and High-Stakes Work**
   - **Consulting Services:** If you have a bac
### 如何在 RK3588 平台上部署 DeepSeek #### 准备工作 为了成功在RK3588开发板上部署DeepSeek-R1-Distill-Qwen-1.5B模型,需先完成一系列准备工作。这包括但不限于获取必要的硬件资源以及软件环境配置。 #### 软件环境搭建 确保操作系统已更新至最新版本并安装Python解释器及其pip包管理工具。对于特定于AI加速的支持库,建议按照官方文档指导进行安装[^1]。 #### 安装依赖项 使用`pip`命令来安装所需的Python库文件,特别是针对机器学习框架的支持组件。例如: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` 此操作旨在提供PyTorch运行所需的基础支持,而不仅仅是局限于上述例子中的CPU版安装方式;实际应用时应依据目标平台特性选择合适的预编译二进制包或源码构建方案[^3]。 #### 获取模型权重与结构定义 访问项目仓库下载预先训练好的DeepSeek-R1-Distill-Qwen-1.5B模型参数,并保存到本地磁盘指定位置以便后续加载调用。通常情况下这些资料会被打包成`.pth`, `.pt`等形式存储。 #### 配置推理引擎 根据具体应用场景调整优化策略,比如量化处理、剪枝等手段提高性能表现的同时降低功耗开销。这部分内容可能涉及到修改网络架构描述文件(.onnx/.pb),或是编写自定义算子以适应底层硬件特点[^2]。 #### 编写测试脚本 创建简单的Python程序用于验证整个流程是否顺畅无误地执行完毕。下面给出了一段示范性质的代码片段作为参考: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" model_name_or_path = 'path_to_your_model' tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(device) def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device) outputs = model.generate(inputs, max_length=50, num_return_sequences=1) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) if __name__ == "__main__": prompt = input("Enter your text:") generate_text(prompt) ``` 这段代码实现了基本的文字生成功能,能够接收用户输入并通过调用已经加载入内存中的大语言模型得到回应输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

于山巅相见

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值