例题:洛谷P1855 榨取kkksc03
题目描述
洛谷 2 的团队功能是其他任何 OJ 和工具难以达到的。借助洛谷强大的服务器资源,任何学校都可以在洛谷上零成本的搭建 OJ 并高效率的完成训练计划。
为什么说是搭建 OJ 呢?为什么高效呢?
因为,你可以上传私有题目,团队外别人是无法看到的。我们还能帮你们评测!
你可以创建作业,给组员布置任务,查看组员的完成情况,还可以点评任意一份代码!
你可以创建比赛!既可以是 OI 赛制还可以是 ICPC 赛制!既可以是团队内部的私有比赛,也可以公开赛,甚至可以指定谁可以参加比赛。这样,搞“x 校联赛”最合适不过了。洛谷凭借这个功能,希望能够提供公开及私有比赛的另外一个平台。
值得说明的是,本次比赛就是采用团队私有题目+邀请比赛的机制。
洛谷的运营组决定,如果一名 OIer 向他的教练推荐洛谷,并能够成功的使用(成功使用的定义是:该团队有 2020 个或以上的成员,上传 1010 道以上的私有题目,布置过一次作业并成功举办过一次公开比赛),那么他可以浪费掉 kkksc03 的一些时间的同时消耗掉 kkksc03 的一些金钱以满足自己的一个愿望。
kkksc03 的时间和金钱是有限的,所以他很难满足所有同学的愿望。所以他想知道在自己的能力范围内,最多可以完成多少同学的愿望?
输入格式
输出格式
一行,一个数,表示 kkksc03 最多可以实现愿望的个数。
输入样例
6 10 10 1 1 2 3 3 2 2 5 5 2 4 3
输出样例
4
这道题是很明显的 0-1 背包问题,可是不同的是选一个物品会消耗两种价值(经费、时间),只需在状态中增加一维存放第二种价值即可。
这时候就要注意,再开一维存放物品编号就不合适了,因为容易 MLE。
代码
for (int k = 1; k <= n; k++) {
for (int i = m; i >= mi; i--) // 对经费进行一层枚举
for (int j = t; j >= ti; j--) // 对时间进行一层枚举
dp[i][j] = max(dp[i][j], dp[i - mi][j - ti] + 1);
}
下一次讲分组背包。