一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
4)学习率
用于通过梯度下降训练模型的标量。在每次迭代期间,梯度下降算法将学习率乘以梯度。所得乘积称为梯度步骤。
5)型号
机器学习系统从训练数据中学到的东西的表示。
6)训练
确定理想参数的过程包括一个模型。
7)随机梯度下降(SGD)
一种批处理大小为1的梯度下降算法。换句话说,SGD依赖于从数据集中随机选择的单个示例来计算每个步骤的梯度估计。
8)平方损失(L2损失)
此函数计算带标签的示例的模型预测值与标签的实际值之差的平方。
由于平方,此损失函数会放大不良预测的影响。
9)损失
衡量模型的预测距离其标签的距离。或者,更悲观地说,是对模型有多糟糕的一种度量。为了确定该值,模型必须定义损失函数。
10)机器学习
一些新手不知道这个术语的含义。但是,他们不应该责怪大多数人只是直接去编码而不学习基础知识。
机器学习是根据输入数据构建(训练)预测模型的程序或系统。
该系统使用学习的模型从与训练模型所用的分布相同的分布中得出的新数据(从未见过)做出有用的预测。
机器学习还指与这些程序或系统有关的研究领域。
结论
感谢您阅读,希望对您所帮助。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!