并查集模板及题目

1.什么是并查集

并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中。其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。

并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题。常常在使用中以森林来表示。

                                                                                                                            ——百度百科

 其实就是一棵树,由一个根节点连接着无数子节点,就像这样:

2.并查集的基本操作(通过题目:讲解)

题目链接:P3367 【模板】并查集 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题目描述

如题,现在有一个并查集,你需要完成合并和查询操作。

输入格式

第一行包含两个整数 N,MN,M ,表示共有 NN 个元素和 MM 个操作。

接下来 MM 行,每行包含三个整数 Z_i,X_i,Y_iZi​,Xi​,Yi​ 。

当 Z_i=1Zi​=1 时,将 X_iXi​ 与 Y_iYi​ 所在的集合合并。

当 Z_i=2Zi​=2 时,输出 X_iXi​ 与 Y_iYi​ 是否在同一集合内,是的输出 Y ;否则输出 N 。

输出格式

对于每一个 Z_i=2Zi​=2 的操作,都有一行输出,每行包含一个大写字母,为 Y 或者 N 。

输入输出样例

输入 #1复制

4 7
2 1 2
1 1 2
2 1 2
1 3 4
2 1 4
1 2 3
2 1 4

输出 #1复制

N
Y
N
Y

说明/提示

对于 30\%30% 的数据,N \le 10N≤10,M \le 20M≤20。

对于 70\%70% 的数据,N \le 100N≤100,M \le 10^3M≤103。

对于 100\%100% 的数据,1\le N \le 10^41≤N≤104,1\le M \le 2\times 10^51≤M≤2×105,1 \le X_i, Y_i \le N1≤Xi​,Yi​≤N,Z_i \in \{ 1, 2 \}Zi​∈{1,2}。

(1)初始化:将每个 结点的根节点设置为自己

    for (i = 1; i <= N; i++)
	{
		f[i] = i;//初始化并查集
	}

(2)查找父节点

int find(int k)
{
	if (k == f[k])return k;//找到根节点,返回
	return find(f[k]);
}

(3)合并,将两个子节点连到同一个父节点

void join(int a,int b)
{
    int root1=find(a),root2=find(b);//寻找根节点
    if(root1!=root2)f[root1]=root2;//合并
}

最后的代码

#include <iostream>
#include <algorithm>
#include <map>
using namespace std;
#define LL long long
const int N = 1e4 + 5;
const int M = 1e5 + 5;
LL n, m;
int z, x, y;
int i, j;
LL f[N];
int find(int k)
{
	if (k == f[k])return k;
	return f[k] = find(f[k]);//更新根节点
}
void join(int a,int b)
{
    int root1=find(a),root2=find(b);
    if(root1!=root2)f[root1]=root2;
}
int main()
{
	cin >> n >> m;
	for (i = 1; i <= N; i++)
	{
		f[i] = i;//初始化并查集
	}
	for (i = 0; i < m; i++)
	{
		cin >> z >> x >> y;
		if (z == 1)
		{
			join(x,y);//合并
		}
		else
		{
			if (find(x) == find(y))
				printf("Y\n");
			else
				printf("N\n");
		}

	}

	return 0;
}

3.常见的一个优化方法

寻找根节点时,将每个子节点的根节点更新为同一个

int find(int k)
{
	if (k == f[k])return k;
	return f[k] = find(f[k]);//更新根节点
}

为什么要这么优化:

在合并时我们可能会得到一棵深度很深的树

 这样的树我们在寻找根节点时的效率比

这样的树效率更低,但是最后的结果是相同的。

 结束语:并查集的模板还是比较简单的,但是真正想要掌握靠的还是多做题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值