1.什么是并查集
并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中。其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。
并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题。常常在使用中以森林来表示。
——百度百科
其实就是一棵树,由一个根节点连接着无数子节点,就像这样:
2.并查集的基本操作(通过题目:讲解)
题目链接:P3367 【模板】并查集 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
题目描述
如题,现在有一个并查集,你需要完成合并和查询操作。
输入格式
第一行包含两个整数 N,MN,M ,表示共有 NN 个元素和 MM 个操作。
接下来 MM 行,每行包含三个整数 Z_i,X_i,Y_iZi,Xi,Yi 。
当 Z_i=1Zi=1 时,将 X_iXi 与 Y_iYi 所在的集合合并。
当 Z_i=2Zi=2 时,输出 X_iXi 与 Y_iYi 是否在同一集合内,是的输出
Y
;否则输出N
。输出格式
对于每一个 Z_i=2Zi=2 的操作,都有一行输出,每行包含一个大写字母,为
Y
或者N
。输入输出样例
输入 #1复制
4 7 2 1 2 1 1 2 2 1 2 1 3 4 2 1 4 1 2 3 2 1 4输出 #1复制
N Y N Y说明/提示
对于 30\%30% 的数据,N \le 10N≤10,M \le 20M≤20。
对于 70\%70% 的数据,N \le 100N≤100,M \le 10^3M≤103。
对于 100\%100% 的数据,1\le N \le 10^41≤N≤104,1\le M \le 2\times 10^51≤M≤2×105,1 \le X_i, Y_i \le N1≤Xi,Yi≤N,Z_i \in \{ 1, 2 \}Zi∈{1,2}。
(1)初始化:将每个 结点的根节点设置为自己
for (i = 1; i <= N; i++)
{
f[i] = i;//初始化并查集
}
(2)查找父节点
int find(int k)
{
if (k == f[k])return k;//找到根节点,返回
return find(f[k]);
}
(3)合并,将两个子节点连到同一个父节点
void join(int a,int b)
{
int root1=find(a),root2=find(b);//寻找根节点
if(root1!=root2)f[root1]=root2;//合并
}
最后的代码
#include <iostream>
#include <algorithm>
#include <map>
using namespace std;
#define LL long long
const int N = 1e4 + 5;
const int M = 1e5 + 5;
LL n, m;
int z, x, y;
int i, j;
LL f[N];
int find(int k)
{
if (k == f[k])return k;
return f[k] = find(f[k]);//更新根节点
}
void join(int a,int b)
{
int root1=find(a),root2=find(b);
if(root1!=root2)f[root1]=root2;
}
int main()
{
cin >> n >> m;
for (i = 1; i <= N; i++)
{
f[i] = i;//初始化并查集
}
for (i = 0; i < m; i++)
{
cin >> z >> x >> y;
if (z == 1)
{
join(x,y);//合并
}
else
{
if (find(x) == find(y))
printf("Y\n");
else
printf("N\n");
}
}
return 0;
}
3.常见的一个优化方法
寻找根节点时,将每个子节点的根节点更新为同一个
int find(int k)
{
if (k == f[k])return k;
return f[k] = find(f[k]);//更新根节点
}
为什么要这么优化:
在合并时我们可能会得到一棵深度很深的树
这样的树我们在寻找根节点时的效率比
这样的树效率更低,但是最后的结果是相同的。
结束语:并查集的模板还是比较简单的,但是真正想要掌握靠的还是多做题。