ROS工作空间路径移动后编译 对于一些创建好的ROS工作空间,在一些必要场合需要对其移动(比如将其移到另一个文件夹中)。这里需要对编译文件进行修改,后续在工作空间中开发和编译新文件才能生效。打开 工作空间/build/Makefile文件,修改其中的。
pycharm运行ROS节点时,导入的包找不到*.so文件ImportError: libmoveit_py_bindings_tools.so.1.1.10: cannot open shared 一般这两个都在/opt/ros/noetic/lib和/opt/ros/noetic/lib/x86_64-linux-gnu目录下。在/etc/ld.so.conf.d文件夹中有3个.conf文件,将找不到的.so文件路径添加到对应的.conf文件中即可。将上一步找到的路径分别添加在libc.conf 和 x86_64-linux-gnu.conf文件中,如图。网上杂找了很久没找到解决方法,现在解决了,所以顺便记录一下。linux动态库路径中找不到*.so共享库。2.添加路径到conf文件中。
TypeError: can‘t convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor .. 查了一些帖子都说改源码,不建议编辑错误,上面已经提示怎么改了。
生成4通道图片并保存和读取 4通道图片格式只有PNG支持,所以通过numpy数组通道组合为4通道后,再用opencv-python保存图片即可(后缀为.png);img = cv2.imread(path)b,g,r = cv2.split(img[1:-1, 1:-1, ])combination = np.stack((b, g, r, map), 2)cv2.imwrite('./original/pictures/combination.png', combination)读取4通道图片时同样用opencv-p
gitee创建仓库、将修改的代码上传gitee 一、安装git详细教程:【Git 详细安装教程(详解 Git 安装过程的每一个步骤)_mukes的博客-CSDN博客_git安装】二、gitee上创建仓库然后在gitee上面创建一个仓库,取个仓库名字和文件路径,点击创建;打开Git Bash,先输入①中的命令,name和email均为你自己的名字和邮件;然后输入②中的命令,注意将img-correction改为你想放代码的路径,如E:/repository/img-correction;期间会弹出一个窗口让你登陆gitee.
MMdetection训练时报错KeyError: “Duplicate key is not allowed among bases. MMdetection在训练时报错如下:这是由于配置文件中继承文件出现重复导致,比如: 其实第一个继承文件里面已经包含了后面三个文件,所以删除后面3个即可
MMdetection在进行voc格式数据测试时,类别结果为voc数据的类别名称‘aeroplane‘, ‘bicycle‘, ‘bird‘,并不是自己的类别名称 这是由于测试时,调用的class_names.py文件里面的类别名称,这里只需要修改一下就行。修改D:\mmdetection-master\mmdet\core\evaluation\class_names.py文件中的def voc_classes():中的类别名称为你自己的类别名称即可...
MMdetection训练验证时报错: data[‘category_id‘] = self.cat_ids[label] IndexError: list index out of range 这是由于配置文件类别与coco.py文件里面类别不一致造成的。\解决办法:将自己的配置文件,如D:\mmdetection-master\configs\faster_rcnn\faster_rcnn_r50_fpn_1x_coco.py中的classes=(..)与D:\mmdetection-master\mmdet\datasets\coco.py中的CLASSES=(...)对应即可。...
mmdetection推理速度benchmark.py文件运行报错 不管你选择什么launcher都会报错,因为这个文件只针对分布式训练使用。换成老版本的代码即可运行代码如下:import argparseimport timeimport torchfrom mmcv import Config, DictActionfrom mmcv.cnn import fuse_conv_bnfrom mmcv.parallel import MMDataParallelfrom mmcv.runner import load_checkpoint, w
MMdetection2测试voc数据获取precision 在使用mmdetection时,测试voc数据集无法得到精度指标,只有recall和mAP,这里可以通过修改几行代码来获得precision指标修改后打印结果:代码修改修改mmdet/core/evaluation/mean_ap.py文件里的print_map_summary函数的5处代码,你可以直接复制这个函数,然后替换掉原来的函数。修改后的函数为:def print_map_summary(mean_ap, results,
MMdetection用voc数据集训练:The `num_classes` (x) in Shared2FCBBoxHead of MMDataParallel does not matches.. 这主要是由于你的类别不匹配导致,将mmdetection-master\mmdet\datasets\voc.py中的类别换成你自己的类别名称即可,如:运行不再报错:
MMdetection训练自己的数据集(win10) 一、准备数据集mmdetection默认使用coco数据集,这里我的原始数据集为PascalVOC格式,先进行数据集转换。各种数据转换项目里边都有现成的代码。cmd到D:\mmdetection-master\tools\dataset_converters文件夹,激活环境,输入如下命令:python pascal_voc.py D:\mmdetection-master\coco_data --out-dir D:\mmdetection-master\coco_data\VOC2007 -
MMdetection环境搭建(win10) 一、 创建虚拟环境这里创建python3.7环境二、安装torch及cudatoolkit进入torch官网,找到需要的torch及cuda(torch官网已经搭配并打包一起,后续不用设置环境变量,激活环境直接用即可)找到以前版本,这里安装torch1.8.0和cuda11.1版本(后续安装mmcv需要对应)复制这条命令,cmd中激活刚才的虚拟环境(cmd中输入activate mmdetection),输入下面代码进行安装conda install pytorch.
完美解决(最简单):不同虚拟环境不同CUDA版本的安装问题(tensorflow-gpu与pytorch) 一、虚拟环境1:torch环境的cuda配置1.先安装Torch进入pytorch官网,https://pytorch.org/get-started/locally/找到想要安装的torch及对应的cuda,(比如我要下载cuda10.2的torch),选中cuda10.2对应的torch(如果没有想要的,查看以前版本torch),复制pip安装的命令,激活虚拟环境输入命令安装即可2.安装cudnn安装完后condalist查看安装情况,你会发现通过这个命令会自动安装torch、to.